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(57) ABSTRACT

Methods of forming solid carbon products include disposing
a plurality of nanotubes in a press, and applying heat to the
plurality of carbon nanotubes to form the solid carbon
product. Further processing may include sintering the solid
carbon product to form a plurality of covalently bonded
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SOLID CARBON PRODUCTS COMPRISING
CARBON NANOTUBES AND METHODS OF
FORMING SAME

PRIORITY CLAIM

This application claims the benefit of the filing date of
U.S. Provisional Patent Application Ser. No. 61/671,022,
filed Jul. 12, 2012, for “Solid Carbon Products Comprising
Carbon Nanotubes and Methods of Forming Same,” the
disclosure of which is hereby incorporated herein in its
entirety by this reference.

FIELD

Embodiments of the present disclosure relate to methods
and systems for forming solid carbon products from carbon
nanotubes including mixtures of various types of carbon
nanotubes and mixtures of carbon nanotubes with other
substances.

BACKGROUND

The following documents, each published in the name of
Dallas B. Noyes, disclose background information hereto,
and each is hereby incorporated herein in its entirety by this
reference:

1. U.S. Patent Publication No. 2012/0034150 Al, pub-
lished Feb. 9, 2012;

2. International Application
filed Mar. 15, 2013;

3. International Application
filed Mar. 15, 2013;

4. International Application
filed Mar. 15, 2013;

5. International Application
filed Mar. 15, 2013;

6. International Application
filed Mar. 15, 2013;

7. International Application
filed Mar. 15, 2013;

8. International Application
filed Mar. 15, 2013;

9. International Application
filed Mar. 15, 2013; and

10. International Application No.
filed Mar. 15, 2013.

Conventional methods of using CNTs (“carbon nano-
tubes™) in engineering materials generally rely on embed-
ding the CNTs in a matrix material. CNTs are currently
processed in a wide variety of composite structures using
metals, plastics, thermoset resins, epoxies, and other sub-
stances as the matrix to hold the CNTs together, thus
creating solid objects. The CNTs act as reinforcing material
to improve properties of the materials. Typical objectives of
using carbon nanotubes in a matrix are to increase the
strength, decrease weight, or to increase electrical and
thermal conductivity of the composite.

Methods to make materials composed primarily of carbon
nanotubes include spinning the carbon nanotubes into fibers
and making “buckyrock.” U.S. Pat. No. 6,899,945, issued
May 31, 2005, and entitled “Entangled single-wall carbon
nanotube solid material and methods for making same”
discloses a method for making buckyrock. Buckyrock is a
three-dimensional, solid block material including an
entangled network of single-wall CNTs. Buckyrock is
mechanically strong, tough, and impact resistant with a bulk

No. PCT/US2013/000071,

No. PCT/US2013/000072,
No. PCT/US2013/000073,
No. PCT/US2013/000075,
No. PCT/US2013/000076,
No. PCT/US2013/000077,
No. PCT/US2013/000078,
No. PCT/US2013/000079,

PCT/US2013/000081,
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density of about 0.72 g/cm® (see Example 3 of U.S. Pat. No.
6,899,945). The single-wall CNTs in a buckyrock form are
present in a random network. The random network of the
CNTs appears to be held in place by Van der Waals forces
between the CNTs and by physical entanglement or inter-
ference of the CNTs. One type of buckyrock is made by
forming a slurry of CNTs in water, slowly removing water
from the slurry to create a paste, and allowing the paste to
dry very slowly, such that the CNT network of the paste is
preserved during solvent evaporation. Buckyrock can be
used in various applications requiring lightweight material
with mechanical strength, toughness, and impact resistance,
such as ballistic protection systems.

Though conventional materials including CNTs have
interesting and useful properties, the individual CNTs com-
prising these materials have significantly different proper-
ties. It would therefore beneficial to produce materials
having properties more comparable to the properties of
individual CNTs.

Disclosure

Methods of forming solid carbon products include pres-
sure compaction methods such as extruding, die pressing,
roller pressing, injection molding etc. to form solid shapes
comprising a plurality of carbon nanotubes. The carbon
nanotubes may optionally be mixed with other substances.
Such solid shapes may be further processed by heating in an
inert atmosphere to temperatures sufficient to sinter at least
some of the CNTs so that covalent bonds form between
adjacent CNTs. The methods may include forming a plural-
ity of nanotubes, disposing the plurality of nanotubes in a
press, and applying heat and pressure to the plurality of
carbon nanotubes to form the solid carbon product. When
sintered, the resulting material is a novel composition of
matter having two or more CNTs with covalent bonding
between them.

The solid carbon products, whether sintered or not,
include interlocked CNTs that define a plurality of voids
throughout the material. The dimension of the interstitial
voids may be controlled by a variety of methods including
controlling the characteristic diameter of the CNTs compris-
ing the solid carbon products, the inclusion of other mate-
rials that may create voids when removed from the solid
carbon products, and the pressure and temperatures at which
the solid carbon products are formed.

Sintered solid carbon products include a plurality of
covalently bonded carbon nanotubes. Some methods include
compressing a material comprising carbon nanotubes, heat-
ing the compressed material in a non-reactive environment
to form chemical bonds between adjacent carbon nanotubes
and form a bonded carbon nanotube structure, and cooling
the bonded carbon nanotube structure to a temperature at
which carbon of the carbon nanotubes does not react with
oxygen.

Other methods include first forming a solid carbon prod-
uct by compressing a material comprising carbon nanotubes
and subsequently placing the resulting solid carbon product
into sintering conditions. The sintering conditions may
include an inert environment, such as a vacuum or inert
atmosphere (e.g., argon or helium). The solid carbon product
is heated to a desired temperature for a period of time to
induce covalent bonding between adjacent CNTs, after
which the object is cooled below the oxidation temperature
of carbon in air. The product may then be removed from the
sintering conditions.
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Such methods may include any of a variety of standard
industrial processing methods such as extrusion, die press-
ing, injection molding, isostatic pressing, and roll pressing.
The sintering of the solid carbon products can be performed
in a variety of apparatus such as are commonly used in
sintered powder metallurgy and sintered ceramic processing.
The sintering of the solid carbon products may include any
of a variety of means including induction heating, plasma
arc discharge, high temperature autoclaves and annealing
furnaces, and other related devices and methods as are
known in the art.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1 through 4 are simplified illustrations of carbon
nanotubes;

FIGS. 5 through 9 are simplified cross-sectional views of
presses for forming solid carbon products;

FIGS. 10 and 11 are simplified illustrations depicting the
structures of linked carbon nanotubes; and

FIG. 12 is a graph showing bulk densities of solid carbon
products formed by compaction and sintering.

MODE(S) FOR CARRYING OUT THE
INVENTION

This disclosure includes methods of forming solid carbon
products by applying pressure to carbon nanotubes, and to
methods for applying heat to the solid products formed by
such processes. Solid carbon products may be useful in
various applications, such as filters, reactors, electrical com-
ponents (e.g., electrodes, wires, batteries), structures (e.g.,
beams, frames, pipes), fasteners, molded parts (e.g., gears,
bushings, pistons, turbines, turbine blades, engine blocks),
etc. Such solid carbon products may exhibit enhanced prop-
erties (e.g., strength, electrical or thermal conductivity, spe-
cific surface area, porosity, etc.) with respect to conventional
materials. This disclosure includes a new class of materials
that contain a plurality of CNTs formed into solid shapes
under pressure. When such solid shapes are sintered, cova-
lent bonds form between at least some of the CNTs, forming
solid shapes. This material has numerous useful properties.

As used herein, the term “sintering” means and includes
annealing or pyrolizing CNTs at temperatures and pressures
sufficient to induce carbon-carbon covalent bonding
between at least some of the adjacent CNTs between at least
some of their contact points.

As used herein, the term “catalyst residual” means and
includes any non-carbon elements associated with the CNTs.
Such non-carbon elements may include a nanoparticle of a
metal catalyst in the growth tip of the CNTs, and metal
atoms or groups of atoms randomly or otherwise distributed
throughout and on the surfaces of the CNTs.

As used herein, the term “green” means and includes any
solid carbon product that has not been sintered.

CNTs may be created through any method known to the
art, including arc discharge, laser ablation, hydrocarbon
pyrolysis, the Boudouard reaction, the Bosch reaction and
related carbon oxide reduction reactions, or wet chemistry
methods (e.g., the Diels-Alder reaction). The methods
described herein are applicable to carbon nanotubes regard-
less of the method of manufacture or synthesis.

CNTs may occur as single-wall and multi-wall carbon
nanotubes of various diameters ranging from a few nano-
meters to 100 nanometers in diameter or more. CNTs may
have a wide variety of lengths and morphologies, and may
occur as substantially parallel “forests”, randomly tangled
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masses, or “pillows” of structured agglomerations. CNTs
may also form or be compounded to form many different
mixtures of CNTs with various combinations and distribu-
tion of the above characteristics (number of walls, diam-
eters, lengths, morphology, orientation, etc.). Various mix-
tures, when compounded and used to form the solid carbon
products described herein, may result in products with
specifically engineered properties. For example, the median
void size of interstitial spaces between CNTs comprising
solid carbon products typically is approximately propor-
tional to the characteristic diameters of the CNTs used in
forming the solid carbon products. The median void size
influences the overall porosity and density of the solid
carbon products.

Various CNT features and configurations are illustrated in
FIGS. 1 through 4. FIG. 1 shows a single-wall CNT 100, in
which carbon atoms 102 are linked together in the shape of
a single cylinder. The carbon atoms 102 are covalently
bonded into a hexagonal lattice, and thus form a CNT 100
that appears as a single graphitic layer rolled into the form
of'a tube. The CNT 100 may be conceptualized as a “rolled
graphene sheet” lattice pattern oriented so that the carbon
atoms 102 spiral at various angles with regard to the axis of
the CNT 100. The angle is called the “chirality” and com-
mon named forms include armchair and zigzag, as described
in Mildred S. Dresselhaus & Phaedon Avouris, Introduction
to Carbon Materials Research, in Carbon Nanotubes: Syn-
thesis, Structure, Properties, and Applications, 1, 6 (Mildred
S. Dresselhaus, Gene Dresselhaus, & Phaedon Avouris, eds.,
2001), the entire contents of which are incorporated herein
by this reference. Many chiralities are possible; CNTs 100
with different chiralities may exhibit different properties
(e.g., CNTs 100 may have either semiconductor or metallic
electrical properties).

The CNT 100 has an inside diameter related to the number
of carbon atoms 102 in a circumferential cross section. The
CNT 100 depicted in FIG. 1 has a zigzag pattern, as shown
at the end of the CNT 100. The diameter may also affect
properties of the CNT 100. Single-walled CNTs 100 can
have many different diameters, such as from approximately
1.0 nm (nanometer) to 10 nm or more. A CNT 100 may have
a length from about 10 nm to about 1 pm (micron), such as
from about 20 nm to about 500 nm or from about 50 nm to
about 100 nm. CNTs 100 typically have an aspect ratio (i.e.,
a ratio of the length of the CNT to the diameter of the CNT)
of about 100:1 to 1000:1 or greater.

CNTs having more than one wall are called multi-wall
CNTs. FIG. 2 schematically depicts a multi-wall CNT 120
having multiple graphitic layers 122, 124, 126, 128 arranged
generally concentrically about a common axis. Double-
walled and triple-walled carbon nanotubes are occasionally
described as distinct classes; however, they may be consid-
ered as the smallest categories of multi-walled CNTs 120.
Diameters of multi-wall CNTs 120 can range from approxi-
mately 3 nm to well over 100 nm. Multi-wall CNTs 120
having outside diameters of about 40 nm or more are
sometimes referred to as carbon nanofibers in the art.

FIG. 3 depicts two forms of multi-wall CNTs 140, 150. In
the CNT 140, one single-wall CNT 142 is disposed within
a larger diameter singe-wall CNT 144, which may in turn be
disposed within another even larger diameter single-wall
CNT 146. This CNT 140 is similar to the CNT 120 shown
in FIG. 2, but includes three single-wall CNTs 142, 144, 146
instead of four. Another form of multi-wall CNTs shown in
FIG. 3 is CNT 150, which may be conceptualized as a single
graphene sheet 152 rolled into tubes.
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FIG. 4 schematically depicts a single-wall CNT 180 with
an attached nanobud 182. The nanobud 182 has a structure
similar to a spherical buckminsterfullerene (“buckyball”),
and is bonded to the single-wall CNT 180 by carbon-carbon
bonds. As suggested by the structure shown in FIG. 4,
modifications may be made to the wall of a single-wall CNT
180 or to the outer wall of a multi-wall CNT. At the point of
bonding between the nanobud 182 and the CNT 180, carbon
double-bonds can break and result in “holes” in the wall of
the CNT 180. These holes may affect the mechanical and
electrical properties of the CNT 180. In single-wall CNTs,
these holes may introduce a relative weakness when com-
pared unmodified cylindrical CNTs. In multi-wall CNTs, the
outer wall may be affected, but any inner walls likely remain
intact.

Carbon nanotubes are typically formed in such a way that
a nanoparticle of catalyst is embedded in the growth tip of
the carbon nanotube. This catalyst may optionally be
removed by mild washing (e.g., by an acid wash). Without
being bound to a particular theory, it is believed that if the
catalyst is left in place, catalyst atoms become mobilized
during the sintering process, and may migrate to the surface
or within the pores of the carbon nanotubes. This process
may disperse the catalyst atoms randomly, uniformly, or
otherwise throughout the solid carbon product mass and may
have a significant influence on the properties of the solid
carbon product. For example, catalyst material may affect
electrical conductivity or the ability to catalyze other chemi-
cal reactions.

The catalyst particles may be selected to catalyze other
reactions in addition to the formation of solid carbon.
Catalyst particles may be any material, such as a transition
metal or any compound or alloy thereof. For example,
catalyst particles may include nickel, vanadium oxide, pal-
ladium, platinum, gold, ruthenium, rhodium, iridium, etc.
Because the catalyst particles are attached to or otherwise
associated with CNTs, each catalyst particle may be physi-
cally separated from other catalyst particles. Thus, the
catalyst particles may collectively have a much higher
surface area than a bulk material having the same mass of
catalyst. Catalyst particles attached to CNTs may therefore
be particularly beneficial for decreasing the amount of
catalyst material needed to catalyze a reaction and reducing
the cost of catalysts. Compressed solid carbon products used
as catalysts may, in many applications, benefit from the
catalytic activity of both the CNT and the metal catalyst
particles embedded in the growth tip of the CNTs.

The CNTs used in the processes herein may be single-wall
CNTs, multi-wall CNTs, or combinations thereof, including
bi-modally sized combinations of CNTs, mixtures of single-
wall and multi-wall CNTs, mixtures of various sizes of
single-wall CNTs, mixtures of various sizes of multi-wall
CNTs, etc. The CNTs may be in forms such as a sheet-
molded compound, a pressure-molded compound, or as a
pourable liquid. The CNTs may be disposed within a press
any other device structured and configured to provide pres-
sure to the material. The press may include an extrusion die,
a mold, a cavity, etc.

For example, in the press 200 shown in FIG. 5, CNTs 202
may be placed in a hopper 204 configured to feed material
through an extrusion die 206. The press 200 includes an
extrusion barrel 208 with a screw mechanism 210 connected
to a drive motor 212 to carry the CNTs 202 through the
extrusion barrel 208 to the extrusion die 206. The extrusion
barrel 208 may optionally include means for heating the
CNTs 202 as the CNTs 202 pass through the extrusion barrel
208. The extrusion die 206 has an opening with a shape
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corresponding to the cross-sectional shape of a part to be
formed in the press 200. Extrusion dies 206 may be inter-
changeable, depending on the shape of objects desired.
Some possible shapes of extrusion dies 206a, 2065, 206¢ are
shown. For example, the extrusion die 206 may have an
opening shaped like a circle, a regular polygon, an irregular
polygon, an I-beam, etc. Extrusion dies 206 can be struc-
tured to create objects of extruded CNTs of a variety of
shapes and sizes: symmetrical or asymmetrical, small to
large. The CNTs 202 may optionally be mixed with another
material before or within the press 200.

In some embodiments and as shown in the press 220 of
FIG. 6, the CNTs 202 are placed into a hopper 224 config-
ured to feed material to a mold 226. The press 220 includes
a barrel 228 with a screw mechanism 230 connected to a
drive motor 232 to carry the CNTs 202 through the barrel
228 to the mold 226. The barrel 228 may optionally include
means for heating the CNTs 202 as the CNTs 202 pass
through the barrel 228. The mold 226 has an opening with
an interior shape corresponding to the exterior shape of a
part to be formed in the press 220. Molds 226 may be
interchangeable, depending on the shape of objects desired.
Some possible shapes of molds 226a and 2265 are shown.
For example, the mold 226 may have a shape of a screw or
a propeller. The CNTs 202 may optionally be mixed with
another material before or within the press 200 to improve
flowability, mold release, or other process properties. Such
materials may be subsequently removed by suitable means
such as etching, pyrolysis, evaporation, etc. The resulting
solid carbon product may substantially free of the additional
material, and may include essentially carbon and, in some
embodiments, residual catalyst material.

In other embodiments and as shown in the press 240 of
FIG. 7, the CNTs 202 are placed into a body 244 having an
interior shape defining an exterior of a product to be formed.
The CNTs 202 may be placed between two pistons 246, 248
surrounded by the body 244. The body 244 may have walls
250 defining an interior cavity and configured to allow the
pistons 246, 248 to slide freely. In other embodiments, a
single piston may be configured to press CNTs against a
body.

In an embodiment as shown in the press 260 of FIG. 8,
CNTs 202 are placed within a mold portion 262 having one
or more surfaces corresponding to a shape of a product to be
formed. One or more additional mold portions 264 are
configured to press the CNTs 202 against the mold portion
262, when pressed by pistons 266, 268, as shown in FIG. 9.
Together, the mold portions 262, 264 define the shape of the
product to be formed.

Pressure is applied to form the CNTs into a cohesive
“green” body. For example, the screw mechanisms 210, 230
shown in FIGS. 5 and 6 apply pressure to the CNTs 202 as
the CNTs 202 pass through the presses 200, 220. Extrusion
through a die 206 as shown in FIG. 5 may be continuous
(theoretically producing an infinitely long product) or semi-
continuous (producing many pieces). Examples of extruded
material include wire, tubing, structural shapes, etc. Mold-
ing, as in the press 220 shown in FIG. 6, is the process of
manufacturing by shaping pliable raw material (e.g., CNTs
202) using a rigid pattern (the mold 226). The CNTs 202
adopt the shape of the mold.

The pistons 266, 268 shown in FIGS. 8 and 9 are pressed
toward the CNTs 202, forming the CNTs 202 into a green
body 270. The resulting green body 270 formed may be held
together by relatively weak forces, such that the green body
270 may easily be further shaped (e.g., machined, drilled,
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etc.), but still holds its shape when handled. The CNTs of the
green body 270 may each be in physical contact with one or
more other CNTs.

Heat is applied to green bodies to link the CNTs together
into a more cohesive body in which at least some of the
adjacent CNTs form covalent bonds between one another.
For example, the CNTs may be heated at a heating rate from
about 1° C./min to about 50° C./min to a temperature of at
least 1500° C., 1800° C., 2100° C., 2400° C., 2500° C.,
2700° C. or even to just below the sublimation temperature
of carbon (approximately 3600° C.). Pressure may also be
applied concurrently with, before, or after heat is applied.
For example, the CNTs may be pressed at 10 to 1000 MPa,
such as 30 MPa, 60 MPa, 250 MPa, 500 MPa, or 750 MPa.
The green bodies may be subjected to a heated inert envi-
ronment, such as helium or argon, in an annealing furnace.
Sintering CNTs (i.e., subjecting them to heat in an oxygen-
free environment) apparently creates covalent bonds
between the CNTs at points of contact. The sintering of the
CNTs typically occurs in a non-oxidizing environment, such
as a vacuum or inert atmosphere so that the carbon nano-
tubes are not oxidized during the sintering. Sintering CNTs
to induce chemical bonding at the contact surfaces may
improve desirable material properties such as strength,
toughness, impact resistance, electrical conductivity, or ther-
mal conductivity in the solid structure product when com-
pared to the green material. The CNTs may also be sintered
in the presence of additional constituents such as metals or
ceramics to form composite structures, lubricants to aid
processing, or binders (e.g., water, ethanol, polyvinyl alco-
hol, coal, tar pitch etc.). Materials may be introduced as
powders, shavings, liquids, etc. Suitable metals may include,
for example, iron, aluminum, titanium, antimony, Babbitt
metals, etc. Suitable ceramics may include materials such as
oxides (e.g., alumina, beryllia, ceria, zirconia, etc.), car-
bides, boride, nitrides, silicides, etc. In embodiments in
which materials other than CNTs are present, covalent
bonding occurs between at least some of the CNTs, and the
additional materials may become locked into a matrix of
CNTs.

The CNTs in the sintered body have chemical bonds
connecting one another. Chemical bonds, which are gener-
ally stronger than physical bonds, impart different properties
on the collection of CNTs than physical bonds. That is, the
sintered body may have higher strength, thermal conductiv-
ity, electrical conductivity, or other properties than the green
body from which it was formed.

When single-wall CNTs are covalently bonded to adjacent
single-wall CNTs, holes can form on the surface of the CNTs
as some of the carbon-carbon bonds break, thus modifying
the mechanical and electrical properties of each single-wall
CNT. The sintered single-wall CNTs, however, may still
typically exceed non-sintered single-wall CNTs in such
properties as strength, toughness, impact resistance, electri-
cal conductivity, and thermal conductivity. With multi-wall
CNTs, typically only the wall of the outer tube is modified;
the internal walls remain intact. Thus, using multi-walled
and bi-modally sized CNTs in, for example, extrusion and
molding processes, may yield solid structures with proper-
ties that, in many respects, exceed practical limitations of
single-walled CNTs.

Sintering appears to cause covalent bonds to form
between the walls of CNTs at their contact points. That is,
any given CNT may “cross-link” with an adjacent CNT at
the physical point of contact of the two CNTs. Any given
CNT having undergone sintering may be covalently bound
to numerous other CNTs (both single-wall CNTs and multi-
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wall CNTs). This increases the strength of the resulting
structure because the CNTs do not slide or slip at the
bonding points. Unsintered, CNTs (e.g., in buckyrock) may
slide with respect to each other. Because the covalent
bonding caused by sintering may occur at numerous sites in
the mass of CNTs, the sintered body has significantly
increased strength, toughness, impact resistance, and con-
ductivity over convention agglomerations of CNTs.

FIG. 10 schematically depicts the cross-linked structure
of two covalently bound CNTs 280, 282 produced by
sintering. When sintered, CNTs 280, 282 covalently bond at
their contact points 284. Each CNT may form covalent
bonds with some or all of the other CNTs with which it is in
contact during sintering. Due to the internal layering in a
multi-wall CNT, covalent boding between the individual
walls of the multi-wall CNT is likely to occur under sinter-
ing conditions. However, this covalent bonding has not yet
been confirmed in testing. The heating and optional pres-
surization of the CNTs in a sintering process are maintained
until the desired level of cross-linking has occurred. The
sintered CNTs are then cooled to a temperature at which the
CNTs will not spontaneously react with oxygen. Thereafter,
the mixture may be exposed to air for further processing,
storage, packaging, shipment, sale, etc.

In another embodiment, a CNT mixture is heated in a
reactive environment (e.g., in the presence of oxygen,
hydrogen, a hydrocarbon, and/or another material). In this
embodiment, heat and pressure are maintained as needed
until the reactants in the reactive environment have reacted
with one another or with the CNTs. The product is then
cooled. In such a process, the reactants may form additional
holes or pores in the CNTs, increasing the specific surface
area of the sintered body. Alternatively, the reactants may
deposit materials on the surface of the CNTs without affect-
ing the underlying CNT structure.

In another embodiment, the CNT mixture is initially
heated and sintered in a nonreactive environment (e.g., in a
vacuum, in the presence of helium, or in the presence of
argon). Subsequent to sintering, the heat and pressure are
changed to suitable reaction conditions and reactants are
added to the environment. Such reactants may include a
variety of metals (as liquid or vapor), metal carbonyls,
silanes, or hydrocarbons. The reaction of the reactants with
one another or with the carbon of the CNT may fill some or
all of the interstices of the CNT lattice with products of the
reactions. Such processing with additional reactants may in
some cases be conducted during sintering, but may also be
performed separately. The heat and pressure are maintained
until the desired level of reaction (both cross-linking within
the CNTs, and the reaction between the CNTs and the
reactant) has occurred. The reacted mixture is then cooled
and removed from the reaction environment for further
processing, storage, packaging, shipment, sale, etc.

FIG. 11 schematically depicts a mass 300 of covalently
bound CNTs 302. The CNTs 302 bind through sintering with
other CNTs 302 (multi-wall or single-wall CNTs) through
mutual contact points 304, binding the aggregate together
into a highly cross-linked structure. The resultant binding
may create a material of significant strength, toughness,
impact resistance, and electrical and thermal conductivity.

During the sintering process, the green body may shrink,
corresponding with a decrease in the size of voids among the
CNTs. However, the sintered body may remain porous due
to the porosity of each CNT (i.e., the center of the CNT) and
due to voids between and among CNTs. The sintered body
may have pores or voids having a median minimum dimen-
sion of less than about 1 um, less than about 500 nm, less
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than about 100 nm, less than about 50 nm, or even less than
about 10 nm. That is, each void may have two or more
dimensions (e.g., a length, a width, and a height, each
perpendicular to the others, or a diameter and a length),
measured in different directions. The voids need not be
regularly shaped. The “minimum dimension” is defined as
the minimum of the two or more dimensions of a single void.
The “median minimum dimension” is defined as the median
of these minimum dimensions for a group of voids.

A sintered body as described herein may have a high
specific surface area, due to voids between CNTs and within
CNTs (i.e., because the CNTs are hollow). For example, a
sintered body may have a specific surface area of at least
about 100 m?/g, at least about 500 m?/g, at least about 750
m?/g, at least about 900 m*/g, or even at least about 1000
m?/g. The specific surface area can be controlled by the
characteristic diameters or mixture of diameters of the CNTs
used in forming the solid carbon product. For example,
small-diameter single-wall CN'Ts have specific surface areas
up to approximately 3000 m*/g, while large-diameter multi-
wall CNTs have specific surface areas of approximately 100
m?/g.

A sintered body may have a high electrical conductivity.
For example, a sintered body may have an electrical con-
ductivity of at least about 1x10° S/m (Siemens per meter), at
least about 1x10° S/m, at least about 1x107 S/m, or even at
least about 1x10® S/m. The electrical conductivity can be
controlled by the types of CNTs used, the chirality of the
CNTs used, the sintering conditions, and the quantity of
resulting covalent bonds in the solid carbon product. For
example, single-wall CNTs with a metallic chirality have a
much higher electrical conductivity than multi-wall CNTs.
As a further example, an increase in the number of covalent
bonds appears to correlate with an increase in conductivity.

A sintered body may also have a high thermal conduc-
tivity. For example, a sintered body may have a thermal
conductivity of at least about 400 W/m'K (watts per meter
per Kelvin), at least about 1000 W/m-K, at least about 2000
W/m-K, or even at least about 4000 W/m-K. The thermal
conductivity of the resulting solid carbon product may be
controlled by the types of CNTs used and the chirality of
CNTs used. For example, single-wall CNTs with a metallic
chirality have much high thermal conductivity than large
multi-wall CNTs.

CNTs may alternatively be pressed after the sintering
process by, for example, extrusion or molding, as described
above with respect to FIGS. 5 through 9. In some embodi-
ments, the sintering process may be part of the formation of
the desired object. For example, a section of the extrusion
barrel may heat the CNTs to the sintering temperature in an
inert atmosphere for an appropriate amount of time to cause
sintering. Such heating may be, for example, induction
heating or plasma arc heating. Thus, sintered CNTs may be
extruded. The sintered CNTs may optionally be mixed with
another material such as a metal, a ceramic, or glass. The
material may be pressed or pulled through a die under either
extreme heat or cold. The material, forced into a given
shape, is held in place for a period of time and at sintering
temperatures and pressures, and then returned to normal
atmospheric conditions. The products may be continuous,
such as wires, or may be discrete pieces, such as bolts,
propellers, gears, etc. Molding of sintered or sintering CNTs
typically involves either using the CNT material in concen-
trated form (i.e., with minimal impurities) or in forming a
moldable composite with another material, such as a metal.
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The moldable material is placed or poured into a rigid mold,
held at a particular temperature and pressure, and then
cooled back to normal atmospheric conditions.

In some embodiments, an incremental manufacturing
method may be employed wherein CNTs (either compressed
or not) are placed in a nonreactive environment, such as in
an inert gas autoclave. The CNTs are sintered to form
covalent bonds between the CNTs in the surface layer and
the underlying layer. For example, a laser may irradiate a
portion of the CNTs in a pattern. Additional CNTs are
deposited over the sintered CNTs, and in turn sintered. The
sintering process is repeated as many times as necessary to
achieve a selected thickness of sintered CNTs. The sintered
CNTs are then cooled to a temperature below which the
CNTs do not react with oxygen or other atmospheric gases.
The sintered CNTs may then be removed from the nonre-
active environment without contaminating the sintered
CNTs. In some embodiments, the sintered CNTs are cooled
and removed from the nonreactive environment before
deposition of each additional portion of CNTs.

In certain embodiments, sintered solid carbon products
are formed in a belt-casting operation. A layer of CNTs is
placed on a moveable belt. The belt moves the CNTs into a
chamber containing a nonreactive environment. The CNTs
are sintered in the chamber, then cooled (e.g., in a portion of
the chamber), and removed from the chamber. The process
may be operated continuously, such as to form a sheet of
sintered CNTs.

In some embodiments, solid carbon products are further
treated by electrodeposition to fill interstices in the solid
carbon products with another material. A solution having
materials to be deposited is prepared. The solvent of the
solution may be water, an organic solvent, or an inorganic
solvent. The solute may include a material such as a metal
salt, an organic salt, a metalorganic salt, etc. Electroplating
solutions are known in the art and not described in detail
herein. The solid carbon product to be treated is contacted
with the solution, such as by immersing the body in the
solution. An electric potential (a direct-current voltage or an
alternating-current voltage) is applied to the body to induce
electrodeposition of one or more components of the solu-
tion. The composition, potential, temperature, and/or pres-
sure are maintained until a selected amount of the material
is deposited onto the solid carbon product. The solid carbon
product is then removed from the solution and rinsed to
remove excess solution.

Solid carbon products formed as described herein each
include a plurality of cross-linked CNTs. The CNTs define
a plurality of voids, which may have a median minimum
dimension of less than about 1 um, less than about 500 nm,
less than about 100 nm, less than about 50 nm, or even less
than about 10 nm Some or all of the CNTs may include a
metal, such as a metal particle from which the CNTs were
formed, or a metal coating on the CNTs. The solid carbon
products may be structural members (e.g., beams), fasteners
(e.g., screws), moving parts (e.g., propellers, crankshafts,
etc.), electrically conductive members (e.g., electrodes,
wires, etc.), or any other form. The solid carbon product may
include another material dispersed in a continuous matrix
surrounding and in contact with the CNTs. The solid carbon
products may have improved strength, toughness, impact
resistance, and electrical and thermal conductivity in com-
parison to conventional materials.
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In some embodiments, the solid carbon products also
include other morphologies of carbon, interspersed with or
otherwise secured to the CNTs. For example, buckyballs
may be connected to some of the CNTs. As another example,
one or more graphene sheets may be formed over all or a
portion of a solid carbon product.

Both the compressed solid carbon products and the sin-
tered solid carbon products described herein have a wide
variety of potentially useful applications. For example, the
compressed solid carbon products may be used as filters,
molecular sieves, catalysts, and electrodes in applications
where the additional mechanical integrity achieved through
sintering is not necessary. The sintered solid carbon products
can be used in the applications in which compressed solid
carbon products can be used and in a wide variety of
additional applications requiring additional mechanical
integrity, electrical properties, and other material-property
enhancements achieved through sintering.

Sintered solid carbon products may be useful components
of armor because of their mechanical integrity, ability to
absorb compressive loads with a high spring constant, and
ability to dissipate heat. That is, sintered solid carbon
products may be used to form projectile-resistant materials,
such as armor plates, bullet-proof vests, etc. The light weight
of the solid carbon products could improve mission pay-
loads, increase vehicle range, and alter the center of gravity.
For example, armor materials including sintered solid car-
bon products may be beneficial in preventing injury and
death of occupants of vehicles such as Mine Resistant
Ambush Protected vehicles (“MRAPs”), which are prone to
tipping. Sintered solid carbon products as described herein
may be effective in light-weight armament systems such as
mortar tubes, gun barrels, cannon barrels, and other com-
ponents. Sintered solid carbon products may also be ben-
eficial in aerial vehicles, such as aircraft, spacecraft, mis-
siles, etc.

EXAMPLES
Example 1
Sintering of Compacted CNTs

CNTs were formed as described in U.S. Patent Publica-
tion No. 2012/0034150 Al. Samples of approximately 1.0
grams to 1.25 grams of CNTs each were pressed in 15-mm
diameter dies using a 100-ton (890-kN) press. The pressed
samples were placed in an inert gas furnace (Model 1000-
3060-FP20, available from Thermal Technology, LLC, of
Santa Rosa, Calif.) and heated under vacuum at a rate of 25°
C. until the samples reached 400° C. This temperature was
maintained for 30 minutes to allow the samples to outgas
any oxygen, water, or other materials present. The furnace
was then filled with inert gas (argon or helium) at 3-5 psi (21
to 34 kPa) above atmospheric pressure. The furnace was
heated at a rate of 20° C./min until the sample reached 1500°
C. This temperature was maintained for 30 minutes. Heating
continued at 5° C./min to a sintering temperature, which was
maintained for a dwell time of 60 minutes. The samples were
then cooled at 50° C./min to 1000° C., after which the
furnace was shut down until the samples reached ambient
temperature. The sample masses, compaction pressures, and
sintering temperatures for the samples are shown in Table 1
below. The inert gas was helium for the samples sintered at
2400° C. and was argon for the other samples.
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TABLE 1

Samples prepared in Example 1

Compaction Sintering
Mass Pressure Temperature

Sample (g) (MPa) °C)
1 1.076 500 1800
2 1.225 750 1800
3 1.176 250 1800
4 1.113 500 2100
5 1.107 750 2100
6 1.147 250 2100
7 1.103 500 2400
8 1.198 750 2400
9 1.121 250 2400
10 1.128 250 1900
11 1.209 500 1900
12 1.212 750 1900
13 1.101 250 2000
14 1.091 500 2000
15 1.225 750 2000
16 1.078 250 1700
17 1.179 500 1700
18 1.157 750 1700

Samples 1 through 18 were harder and more robust than
were the samples before the heating process. At the highest
sintering temperature of 2400° C. (samples 7 through 9), the
sintered pellets are flakier than the other sintered samples.
All the samples prepared in Example 1 were qualitatively
observed to be hard.

Pycnometry tests show that the skeletal density decreases
from 2.2 g/cm? for raw powders and raw compactions to 2.1
g/em®, 2.08 g/cm>, and 2.05 g/cm> for the samples sintered
at 1800° C., 2100° C., and 2400° C., respectively. Bulk
density also decreased after sintering, in almost every case
to less than 1.0 g/cm>. Pellet thickness increased 5% to 9%
during sintering, with the higher pressure compactions
expanding more than the lower pressure compactions. The
bulk densities of Samples 1 through 9 are shown in Table 2
and in FIG. 12.

TABLE 2

Properties of samples prepared in Example 1:

After Compaction After Sintering

Compac- Bulk  Sintering Bulk

tion Skeletal Den- Temper- Skeletal Den-

Sam-  Pressure Density sity ature Density sity
ple (MPa) (g/ce) (g/ce) “c) (g/ee) (g/ee)
1 600 2.1992 1.043 1800 2.1095 0.960
2 900 2.2090 1.095 1800 2.0993 0.994
3 300 0.990 1800 2.1131 0.921
4 600 1.063 2100 2.0680 0.971
5 900 1.084 2100 2.0817 0.992
6 300 0.999 2100 2.0829 0.910
7 300 0.985 2400 2.0553 0.932
8 600 1.069 2400 2.0479 1.009
9 900 1.102 2400 2.0666 0.991

Example 2

Spark Plasma Sintering of CNTs

CNTs were formed as described in U.S. Patent Publica-
tion No. 2012/0034150 Al. Graphite foil (available from
Mineral Seal Corp., of Tucson, Ariz.) was lined into 20-mm
diameter dies, and 2.0 g to 4.0 g of CNTs were placed over
the foil. The samples were placed in a spark plasma sintering
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(SPS) system (model SPS 25-10, available from Thermal
Technology, LL.C, of Santa Rosa, Calif.). An axial pressure
of approximately 5 MPa was applied to the CNT samples,
and the SPS system was then evacuated to less than 3 mTorr
(0.4 Pa). The sample was heated at 150° C./min to 650° C.,
and this temperature was maintained for one minute to allow
the vacuum pump to re-evacuate any materials out-gassed.
The pressure was increased to the compaction pressure of 30
MPa or 57 MPa, while simultaneously increasing the tem-
perature at a rate of 50° C./min to 1500° C. The temperature
and pressure were maintained for one minute. The tempera-
ture was then increased at 50° C./min to the sintering
temperature, and maintained for 10 min or 20 min. After the
dwell, the pressure was reduced to 5 MPa, and the sample
allowed to cool at 150° C./min to 1000° C., after which the
furnace was shut off until the samples reached ambient
temperature.

The sample masses, compaction pressures, compaction
rates, sintering temperatures, and dwell times for the
samples are shown in Table 2 below.

TABLE 3

Samples prepared in Example 2:

Compaction ~ Compaction  Sintering Dwell

Mass Pressure rate Temperature  time

Sample (g) (MPa) (MPa/min) °C) (min)
19 2.449 57 13.0 1800 10
20 3.027 57 13.0 2100 10
21 4.180 57 13.0 1800 20
22 4.210 30 6.0 1800 10
23 4.417 30 6.0 1800 20

The SPS-sintered pellets formed in Example 2 were about
10 mm thick and had bulk densities between 1.3 g/cm’ and
1.5 g/cm®. To illustrate the strength of these samples, sample
#20 was planned to be sintered 2100° C., but at about 1900°
C., the die broke. The ram traveled significantly, crushing
the graphite die. After the test was completed, the die was
broken away from the sample. The sample remained visibly
intact, though slightly thinner than expected. This would
indicate that the sintering occurs at temperatures less than
1900° C., that the strength of SPS-sintered pellets is high,
even at extreme temperatures, and that the sintered samples
are strong enough to resist an applied force without fractur-
ing.

The bulk densities of the samples with the graphite foil
still attached were determined. For the samples weighing
about 4 g (i.e., samples #21, #22, and #23), bulk densities
were between 1.35 g/em® and 1.50 g/cm®. The volume
resistivity and electrical conductivity of the samples were
also measured. These data are shown in Table 4. The
samples are more conductive than amorphous carbon, and
nearly as conductive as graphite.

TABLE 4

Properties of samples prepared in Example 2:

Electrical
Density Resistance Resistivity Conductivity
Sample (g/em?) (Q) (Q - m) (S/m)

19 1.588 242 x 1073 4.98 x 1072 2.01 x 107
20 1.715 2,02 x 1073 4.77 x 1072 2.10 x 107
21 1.494 3.24 x 1073 1.23 x 1074 8.14 x 1073
22 1.350 3.80 x 1073 1.62 x 107# 6.19 x 1073
23 1.429 3.7 x 1073 1.57 x 1074 6.37 x 1073

10

15

20

25

30

40

45

55

60

65

14

Although the foregoing description contains many spe-
cifics, these are not to be construed as limiting the scope of
the present invention, but merely as providing certain
embodiments. Similarly, other embodiments of the inven-
tion may be devised which do not depart from the scope of
the present invention. For example, features described
herein with reference to one embodiment also may be
provided in others of the embodiments described herein. The
scope of the invention is, therefore, indicated and limited
only by the appended claims and their legal equivalents,
rather than by the foregoing description. All additions,
deletions, and modifications to the invention, as disclosed
herein, which fall within the meaning and scope of the
claims, are encompassed by the present invention.

What is claimed is:

1. A method of forming a solid carbon product, the
method comprising:

disposing a plurality of carbon nanotubes comprising a

residual metal catalyst in a press;

applying pressure to the plurality of carbon nanotubes;

and

sintering the plurality of carbon nanotubes at a tempera-

ture of at least about 2,100° C. to form covalent bonds
between adjacent carbon nanotubes and produce a
sintered solid carbon product comprising the residual
metal catalyst and covalently bonded carbon nano-
tubes.

2. The method of claim 1, further comprising after sin-
tering the plurality of carbon nanotubes, exposing the sin-
tered solid carbon product to at least one reactant selected
from the group consisting of metals, metal carbonyls,
silanes, and hydrocarbons.

3. The method of claim 1, wherein sintering the plurality
of carbon nanotubes comprises sintering the plurality of
carbon nanotubes in an inert atmosphere or in a vacuum.

4. The method of claim 1, wherein disposing a plurality of
carbon nanotubes comprising a residual metal catalyst in a
press comprises disposing a plurality of carbon nanotubes
comprising a metal selected from the group consisting of the
elements of Groups 5 through 10 of the periodic table in the
press.

5. The method of claim 1, wherein applying pressure to
the plurality of carbon nanotubes and sintering the plurality
of carbon nanotubes to form the sintered solid carbon
product comprises forming a porous sintered solid carbon
product.

6. The method of claim 1, wherein applying pressure to
the plurality of carbon nanotubes and sintering the plurality
of carbon nanotubes to form the sintered solid carbon
product comprises forming an electrically conductive sin-
tered solid carbon product.

7. The method of claim 6, wherein forming an electrically
conductive sintered solid carbon product comprises forming
an electrode.

8. The method of claim 1, wherein applying pressure to
the plurality of carbon nanotubes and sintering the plurality
of carbon nanotubes to form the sintered solid carbon
product comprises extruding the sintered solid carbon prod-
uct through a die.

9. The method of claim 1, wherein applying pressure to
the plurality of carbon nanotubes and sintering the plurality
of carbon nanotubes to form the sintered solid carbon
product comprises pressing the plurality of carbon nano-
tubes into a mold.

10. The method of claim 1, wherein disposing the plural-
ity of carbon nanotubes in a press comprises disposing the
plurality of carbon nanotubes in a mold within the press.
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11. The method of claim 1, further comprising:

preparing a liquid solution comprising a salt;

contacting the sintered solid carbon product with the

liquid solution;

applying an electric potential to the sintered solid carbon

product to induce electrodeposition of at least one
component of the liquid solution onto surfaces of the
sintered solid carbon product and to form a plated
sintered solid carbon product; and

rinsing the plated sintered solid carbon product to remove

the liquid solution therefrom.

12. The method of claim 1, wherein the residual metal
catalyst comprises at least one material selected from the
group consisting of vanadium oxide, palladium, platinum,
gold, ruthenium, rhodium, and iridium.

13. The method of claim 1, wherein sintering the plurality
of carbon nanotubes comprises sintering the plurality of
carbon nanotubes in the presence of a ceramic material
selected from the group consisting of boride(s), silicide(s),
and combinations thereof.

14. The method of claim 1, further comprising mixing the
sintered solid carbon product with at least one material
selected from the group consisting of a metal, a ceramic, and
a glass to form a material and pressing or pulling the
material through a die.

15. The method of claim 1, wherein forming a sintered
solid carbon product comprising the residual metal catalyst
comprises forming the sintered solid carbon product to have
an electrical conductivity of at least about 1x10° Siemens
per meter.
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