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METHODS OF FORMING SEMICONDUCTOR 
DEVICE STRUCTURES, AND RELATED 

STRUCTURES 

TECHNICAL FIELD 

Embodiments of the present disclosure relate to methods of 
forming metal structures for semiconductor device struc 
tures, to related methods of forming memory cells, and to 
related semiconductor device structures. 

BACKGROUND 

Integrated circuits (ICs), the key components in thousands 
of electronic systems, generally include interconnected net 
works of electrical components fabricated on a common 
foundation, or substrate. Metal structures are commonly used 
to electrically connect semiconductor features, such as 
capacitors or transistors, or to define a specific IC, such as a 
computer memory or microprocessor. The deposition and 
processing methods used to form the metal structures may 
affect the quality of the metal structures and impact overall 
manufacturability, performance, and lifetime of the IC. Thus, 
the methods used to form the metal structures are increasingly 
determining the limits in performance, density and reliability 
of integrated circuits. 
As a non-limiting example, the deposition and processing 

methods used to form active electrodes for memory cells of 
conductive bridging random access memory (CBRAM) 
devices may greatly affect the performance and reliability of 
such devices. Memory cells of CBRAM devices convention 
ally utilize metallic or ionic forms of silver (Ag) or copper 
(Cu) to form a conductive bridge between an inert electrode 
and an active electrode. The active electrode serves as the 
source of the Ag or Cu. The conductive bridge is formed by 
the drift (e.g., diffusion) of Agor Cucations (by application of 
a voltage across the electrodes) from the active electrode, 
through an active material of the memory cell, and to the inert 
electrode, where the Ag or Cu ions are electro-chemically 
reduced. The conductive bridge may be removed (by apply 
ing a voltage with reversed polarity across the electrodes) or 
may remain in place indefinitely without needing to be elec 
trically refreshed or rewritten. 
A problem with the fabrication of CBRAM devices arises 

due to the difficulty of processing the Agor Cu. For example, 
Cu cannot be etched with conventional RIE techniques, and is 
typically processed in a damascene flow. Also, there are cur 
rently no chemical vapor deposition (CVD) or atomic layer 
deposition (ALD) techniques for Ag. In addition, the ability 
to deposit Cu and Ag in small openings is limited. Therefore, 
deposition is conventionally conducted by physical vapor 
deposition (PVD), which limits the scalability of Agdama 
scene flows. It is, therefore, currently of interest to minimize 
the extent of Ag or Cu processing during the integration and 
fabrication of semiconductor devices, such as CBRAM 
devices. 

Selective deposition techniques are one way of minimizing 
Ag or Cu processing. In such techniques, pre-patterned 
chemical specificity enables materials, such as Agor Cu, to be 
preferentially deposited only in desired locations, which 
avoid the need to etch or polish such materials. Electroless 
plating is a conventional selective deposition technique. 
However, electroless plating exhibits variability in nucleation 
and growth rates, which may disadvantageously result in 
inconsistencies in the volume of metal deposited at each site 
within a memory array, significantly impacting operations 
where the quantity of selectively deposited metal must be 
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critically controlled. Electroless plating also requires sub 
strates that are electrochemically active, whereas, in certain 
semiconductor devices (e.g., MOS devices, MIM devices, 
and CBRAM devices), it is desirable to selectively deposit 
materials to substrates that are electrochemically inactive 
(e.g., dielectric materials). Accordingly, improved methods 
of forming metal structures for semiconductor devices (e.g., 
CBRAM devices) using selective deposition techniques are 
desired, as are related methods of forming memory cells. 

BRIEF DESCRIPTION OF THE SEVERAL 
VIEWS OF THE DRAWINGS 

FIGS. 1A through 1E are partial cross-sectional views of a 
semiconductor structure and illustrate a method of forming a 
metal structure for a semiconductor device structure in accor 
dance with embodiments of the present disclosure; 

FIGS. 2A-2F are partial cross-sectional views of a semi 
conductor structure and illustrate another method of forming 
a metal structure for a semiconductor device structure in 
accordance with embodiments of the present disclosure; 

FIGS. 3A-3E are partial cross-sectional views of a semi 
conductor device structure and illustrate yet another method 
offorming a metal structure for a semiconductor device struc 
ture in accordance with embodiments of the present disclo 
sure; 

FIGS. 4A-4G are partial cross-sectional views of a semi 
conductor device structure and illustrate yet still another 
method of forming a metal structure for a semiconductor 
device structure in accordance with embodiments of the 
present disclosure; 

FIGS. 5A-5F are partial cross-sectional views of a semi 
conductor device structure and illustrate yet stillan additional 
method of forming a metal structure for a semiconductor 
device structure in accordance with embodiments of the 
present disclosure; 

FIG. 6A is a scanning electron micrograph image showing 
a top-down view of copper particles formed on a semicon 
ductor device structure, as described in Example 1: 

FIG. 6B is a magnified scanning electron micrograph 
image showing a top-down view of a single copper particle 
formed on a semiconductor device structure, as described in 
Example 1: 

FIG. 7A is a graph of Auger analysis of the single copper 
particle shown in FIG. 6B, as described in Example 1: 

FIG. 7B is an Auger electron map of the single copper 
particle shown in FIG. 6B, as described in Example 1: 

FIG. 8A is a scanning electron micrograph image showing 
a top-down view of copper particles formed on a semicon 
ductor device structure, as described in Example 2: 

FIG. 8B is a magnified scanning electron micrograph 
image showing a top-down view of copper particles formed 
on a semiconductor device structure, as described in Example 
2; 

FIG. 9A is a scanning electron micrograph image showing 
a top-down view of copper particles formed on a semicon 
ductor device structure, as described in Example 2: 

FIG. 9B is a magnified scanning electron micrograph 
image showing a top-down view of copper particles formed 
on a semiconductor structure, as described in Example 2: 

FIG. 10A is a scanning electron micrograph image show 
ing a top-down view of copper particles formed on a semi 
conductor device structure, as described in Example 2: 

FIG. 10B is a magnified scanning electron micrograph 
image showing a top-down view of a single copper particle 
formed on a semiconductor device structure, as described in 
Example 2: 
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FIG. 11A is a graph of Auger analysis of the single copper 
particle shown in FIG. 10B, as described in Example 2; and 

FIG. 11B is an Auger electron map of the single copper 
particle shown in FIG. 10B, as described in Example 2. 

DETAILED DESCRIPTION 

Methods of forming metal structures of semiconductor 
device structures are disclosed, as are related methods of 
forming memory cells, and related semiconductor device 
structures. The metal structure is formed from the selective 
and self-limited deposition of a metal, such as copper (Cu), 
silver (Ag), or alloys thereof. The metal structure is formed by 
complexing a metal precursor with a polymer that is config 
ured to react with or couple to the metal precursor and has 
been applied to predetermined or patterned locations on a 
semiconductor substrate. The amount of metal precursor 
complexed with the polymer is limited at least by the amount 
of metal precursor applied to the polymer and the number of 
available binding or complexing sites in the polymer. The 
polymer may be removed and the metal precursor reduced to 
form the metal structure. By way of example and not limita 
tion, the metal structure may be an electrode or an intercon 
nect. In one embodiment, the metal structure may be used as 
an active electrode for a memory cell of a conductive bridge 
random access memory (CBRAM) device. As used herein, 
the term “active electrode” means and includes a conductive 
material, such as Cu or Ag, which serves as a source of metal 
ions (e.g., Cu", Ag") for formation of the conductive bridge. 
The metal structure may also be used as a conductive interface 
in a via, or as a nucleation site (e.g., a seed material) for 
subsequent metal deposition, such as electroless deposition. 
The selective and self-limited metal deposition processes dis 
closed herein may overcome difficulties with conventional 
processing of metals (e.g., difficulties processing Cu and Ag, 
such as difficulties etching and/or depositing Cu and Ag into 
small structures), decrease the deposition variability of cur 
rent selective deposition technologies (e.g., electroless plat 
ing, autocatalytic deposition), and enable increased perfor 
mance in semiconductor device structures (e.g., memory 
cells) and semiconductor devices (e.g., CBRAM devices) that 
rely on specific and uniform quantities of metal. 

The following description provides specific details, such as 
material types, material thicknesses, and processing condi 
tions in order to provide a thorough description of embodi 
ments of the present disclosure. However, a person of ordi 
nary skill in the art will understand that the embodiments of 
the present disclosure may be practiced without employing 
these specific details. Indeed, the embodiments of the present 
disclosure may be practiced in conjunction with conventional 
fabrication techniques employed in the industry. In addition, 
the description provided below does not form a complete 
process flow for manufacturing a semiconductor device. The 
semiconductor structures described below do not formacom 
plete semiconductor device. Only those process acts and 
structures necessary to understand the embodiments of the 
present disclosure are described in detail below. Additional 
acts to form the complete semiconductor device from the 
intermediate semiconductor structures may be performed by 
conventional fabrication techniques. Also note, any drawings 
accompanying the present application are for illustrative pur 
poses only, and are thus not drawn to scale. Additionally, 
elements common between figures may retain the same 
numerical designation. 
As used herein, relational terms, such as “first,” “second.” 

“over,” “top,” “bottom,” “underlying,” etc., are used for clar 
ity and convenience in understanding the disclosure and 
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4 
accompanying drawings and does not connote or depend on 
any specific preference, orientation, or order, except where 
the context clearly indicates otherwise. 

FIGS. 1A through 1E, are simplified partial cross-sectional 
views illustrating embodiments of a method of forming at 
least one metal structure for a semiconductor device struc 
ture, such as an active electrode of a memory cell (e.g., for a 
CBRAM device), a conductive interface in a via, or a nucle 
ation site. Referring to FIG. 1A, semiconductor device struc 
ture 100 may include an electrode 102, an active material 104, 
and a block copolymer material 106. The active material 104 
may be formed over and in contact with the first electrode 
102, and the block copolymer material 106 may be formed 
over and in contact with the active material 104. 
The electrode 102 may include any suitable conductive 

material including, but not limited to, a metal, a metal alloy, a 
conductive metal oxide, or combinations thereof. For 
example, the first electrode 102 may beformed from tungsten 
(W), tungsten nitride (WN), nickel (Ni), tantalum nitride 
(Tan), platinum (Pt), gold (Au), titanium nitride (TiN), tita 
nium silicon nitride (TiSiN), titanium aluminum nitride 
(TiålN), molybdenum nitride (MoN), or a combination 
thereof. In at least some embodiments, the first electrode 102 
is formed from W. The electrode 102 may beformed in, on, or 
over a substrate (not shown) using conventional techniques, 
such as chemical vapor deposition (CVD), physical vapor 
deposition (PVD), or atomic layer deposition (ALD). As used 
herein, the term “substrate” means and includes a base mate 
rial or construction upon which additional materials are 
formed. The substrate may be a semiconductor substrate, a 
base semiconductor layer on a supporting structure, a metal 
electrode or a semiconductor substrate having one or more 
layers, structures or regions fondled thereon. The substrate 
may be a conventional silicon substrate or other bulk substrate 
comprising a layer of semiconductive material. As used 
herein, the term “bulk substrate” means and includes not only 
silicon wafers, but also silicon-on-insulator (SOI) substrates, 
such as silicon-on-sapphire (SOS) substrates and silicon-on 
glass (SOG) substrates, epitaxial layers of silicon on a base 
semiconductor foundation, and other semiconductor or opto 
electronic materials, such as silicon-germanium, germanium, 
gallium arsenide, gallium nitride, and indium phosphide. The 
substrate may be doped or undoped. 
The active material 104 may be a solid state electrolyte 

material, such as at least one of a chalcogenide compound, a 
transition metal oxide, and a silicon oxide. As used herein, the 
term “chalcogenide compound” refers to a binary or multi 
nary compound that includes at least one chalcogen and a 
more electropositive element or radical. As used herein, the 
term “chalcogen” refers to an element of Group VI of the 
Periodic Table, such as oxygen (O), sulfur (S), selenium (Se), 
or tellurium (Te). The electropositive element may include, 
but is not limited to, nitrogen (N), silicon (Si), nickel (Ni), 
gallium (Ga), germanium (Ge), arsenic (As), silver (Ag), 
indium (In), tin (Sn), antimony (Sb), gold (Au), lead (Pb), 
bismuth (Bi), or combinations thereof. The chalcogenide 
compound may be a binary, ternary, or quaternary alloy. As 
used herein, the term “transition metal oxide” means and 
includes an oxide of an element of Groups VB, VIB, VIIB, 
VIII, IB, and IIB of the Periodic Table, such as copper oxide 
(CuO), cobalt oxide (CoO), iron oxide (Fe2O3), nickel oxide 
(NiO), magnesium oxide (MnO2), zinc oxide (ZnO), and 
titanium oxide (TiO2). The siliconoxide may, for example, be 
silicon dioxide (SiO2). In at least some embodiments, the 
active material 104 is SiO2. The active material 104 may be 
formed over and in contact with the electrode 102 using 
conventional techniques, such as CVD, PVD, or ALD. 
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As used herein, the term “block copolymer material” 
means and includes a polymer material including two or more 
polymer blocks covalently bound to one or more polymer 
blocks of unlike type. The block copolymer material 106 may 
be selected based on an ability of at least one polymer block 
to form a complex with a metal precursor, as described in 
further detail below. At least one of the polymer blocks may 
include at least one functional group that is configured to 
interact with the metal precursor to form the complex. The 
block copolymer material 106 may be a diblock copolymer 
material (i.e., copolymer material including two polymer 
blocks), a triblock copolymer (i.e., a copolymer material 
including three polymer blocks), or a multiblock copolymer 
(i.e., a copolymer material including more than three polymer 
blocks). The different polymer blocks of the block copolymer 
material may be substantially immiscible in one another. By 
way of non-limiting example, the block copolymer material 
106 may be a diblock copolymer including a hydrophobic 
block and a hydrophilic block. The hydrophobic block may 
include a polymer substantially insoluble in a solvent (e.g., an 
inert polar solvent, such as at least one of water and an organic 
solvent, such as an alcohol, tetrahydrofuran, and diemthyl 
formamide). The hydrophilic block may include a polymer 
that swells upon contact with the solvent. In at least some 
embodiments, the block copolymer material is polystryene 
block-poly-2-vinylpryidine (PS-2-P2VP). A ratio of the 
hydrophilic block to the hydrophobic block may be within a 
range offrom about 80:20 by weight to about 50:50 by weight 
and, such as about 70:30 by weight. The block copolymer 
material 106 may be applied over and in contact with the 
active material 104 by conventional techniques, such as spin 
casting, spin coating, spraying, ink coating, or dip coating. 

Referring to FIG. 1B, an annealing process may be used to 
initiate phase separation between polymer blocks of the block 
copolymer material 106 (FIG. 1A) to form a block copolymer 
assembly 108 including at least two different domains. The 
block copolymer assembly 108 may be formed from the 
block copolymer material 106 (FIG. 1A) by conventional 
self-assembly techniques, which are not described in detail 
herein. The at least two different domains may include at least 
one first domain 110 (e.g., at least one minority domain) and 
at least one second domain 112 (e.g., at least one majority 
domain). One or more of the at least one first domain 110 and 
the at least one second domain 112 may include features (e.g., 
cylinders, or lamellae) that extend linearly along a direction 
normal to a planar surface (e.g., top surface) of at least one of 
the electrode 102 and the active material 104. When the block 
copolymer material 106 (FIG. 1A) is a diblock copolymer 
including a hydrophobic block and a hydrophilic block, the at 
least one first domain 110 may correspond to the hydrophilic 
block and the at least one second domain 112 may correspond 
to the hydrophobic block. The annealing process may, for 
example, include at least one of thermal annealing (e.g., at a 
temperature greater than the glass transition temperature of 
the block copolymer material 106 and less than the degrada 
tion temperature of the block copolymer material 106), sol 
vent vapor-assisted annealing (e.g., at a temperature greater 
than or equal to room temperature), and supercritical fluid 
assisted annealing. By way of non-limiting example, the 
block copolymer material 106 may be thermally annealed by 
exposing the block copolymer material 106 to a temperature 
within a range of from about 130° C. to about 275° C. in a 
vacuum or an inert atmosphere (e.g., a nitrogen atmosphere, 
an argon atmosphere, or combinations thereof). 

Referring to FIG. 1C, the block copolymer assembly 108 
(FIG. 1B) may be exposed to a staining agent 114 to form a 
metal-complexed block copolymer assembly 116 including 
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at least one metal-complexed domain 118 and at least one 
non-metal-complexed domain 120. As depicted in FIG. 1C, 
the at least one first domain 110 (FIG. 1B) may become the at 
least one metal-complexed domain 118 and the at least one 
second domain 112 (FIG. 1B) may become the at least one 
non-metal-complexed domain 120. In additional embodi 
ments, the at least one first domain 110 (FIG. 1B) may 
become the at least one non-metal-complexed domain 120 
and the at least one second domain 112 (FIG. 1B) may 
become the at least one metal-complexed domain 118. 
The staining agent 114 may include at least one metal 

precursor 122. The at least one metal precursor 122 may be an 
elemental metal, an elemental metalloid, or a metal-contain 
ing compound capable of selectively coupling with the poly 
mer of one or more domain(s) (e.g., the at least one first 
domain 110 (FIG. 1B)) of the at least two different domains 
relative to the polymer of one or more other domain(s) (e.g., 
the at least one second domain 112 (FIG. 1B)) of the at least 
two different domains. Suitable elemental metals may, for 
example, include copper, silver, ruthenium, cobalt, nickel, 
titanium, tungsten, tantalum, molybdenum, platinum, palla 
dium, iridium, gold, and iron. Suitable elemental metalloids 
may, for example, include silicon, and germanium. Suitable 
metal-containing compounds may, for example, include 
metal oxides (e.g., metal alkoxide), and metal salts (e.g., 
metal halides, metal sulfates, metal cyanides, metal nitrides, 
and metal nitrates). Optionally, the staining agent 114 may 
also include at least one solvent. The at least one solvent may 
be a liquid, gas, or vapor capable of selectively permeating 
and swelling the one or more domain(s) (e.g., the at least one 
minority domain 110 (FIG. 1B)) of the at least two different 
domains relative to the one or more other domain(s) (e.g., the 
at least one majority domain 112 (FIG. 1B)) of the at least two 
different domains. In at least some embodiments, the staining 
agent 114 is a mixture of the metal precursor 122 and at least 
one solvent. 

Exposing the block copolymer assembly 108 (FIG. 1B) to 
the staining agent 114 may form the metal-complexed block 
copolymer assembly 116 through at least one of chelation, 
other ligand interactions, and coulombic interactions. As a 
non-limiting example, at least where the metal precursor 122 
is an elemental metal or an elemental metalloid and the poly 
mer of one or more domain(s) (e.g., the at least one first 
domain 110 (FIG. 1B)) includes at least one of unsaturated 
organic groups (i.e., organic groups having ?t-orbital elec 
trons) and one or more element(s) of Groups VA and VIA of 
the Periodic table of Elements (e.g., nitrogen, phosphorus, 
sulfur, and oxygen) in appropriate spacings and orientations, 
the polymer of the one or more domain(s) may coordinate 
with the elemental metal or the elemental metalloid (e.g., 
charge-neutral forms, and charge-positive forms) through 
chelation and/or other ligand interactions. As an additional 
non-limiting example, at least where the metal precursor 122 
is a metal-containing compound, the metal precursor 122 may 
be selectively coupled to the polymer of one or more 
domain(s) (e.g., the at least one minority domain 110 (FIG. 
1B)) through coulombic interactions by providing a charge to 
the polymer of the one or more domain(s) opposing a charge 
provided to the metal-containing compound. For instance, if 
the polymer of one or more domain(s) (e.g., the at least one 
minority domain 110 (FIG. 1B)) includes cationic function 
ality (e.g., functional groups or constituents that are or may 
become positively charged, such as pyridine), the staining 
agent 114 may be an aqueous acid solution including a metal 
containing compound including anionic functionality (e.g., 
functional groups or constituents of the metal-containing 
compound that are or may become negatively charged). Con 
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pattern 308 including at least one polymer structure 310 and 
at least one opening 312. Removing the portion of the poly 
mermaterial 306 (FIG.3A) may expose a surface of the active 
material 304 or, if the active material 304 is absent, a surface 
of the electrode 302. The polymer pattern 308 may beformed 
using conventional techniques. By way of non-limiting 
example, a resist material (not shown), such as a conventional 
photoresist or a conventional e-beam resist, may be applied 
over the polymer material 306 (FIG. 3A) and patterned using 
appropriate lithography techniques to form a patterned resist 
(not shown). The pattern defined by the patterned resist (not 
shown) may be transferred into the polymer material 306 
(FIG. 3A) using at least one dry etching process, such as 
reactive ion etching (RIE), plasma etching, reactive ion beam 
etching, or chemically assisted ion beam etching. Following 
the dry etching process, the patterned resist (not shown) may 
be removed using conventional techniques, such as a solvent 
strip utilizing a solvent with which the polymer is substan 
tially immiscible. In additional embodiments, the polymer 
material 306 may be a stainable photoresist including a blend 
of photoactive species and chemically active species. The 
photoactive species may enable photoimaging, and the 
chemically active species may enable staining. 

Referring next to FIG. 3C, the polymer pattern 308 (FIG. 
3B) may be exposed to a staining agent 314 to form a metal 
complexed polymer pattern 316 including at least one metal 
complexed polymer structure 318 and the at least one opening 
312. The staining agent 314 and process offorming the metal 
complexed polymer pattern 316 may be substantially similar 
to the staining agent 114 and process offorming of the metal 
complexed copolymer assembly 116 described above. How 
ever, whereas the staining agent 114 may enable the selective 
coupling of the metal precursor 122 included therein with the 
polymer of the at least one minority domain 110, the staining 
agent 314 may enable the selective coupling of metal precur 
sor 322 included therein with the polymer of the at least one 
polymer structure 310 (FIG. 3B). 

Referring to FIG. 3D, the polymer material may be vola 
tized and removed from the at least one metal-complexed 
polymer structure 318 (FIG. 3C), and the metal precursor 322 
(FIG. 3C) present therein may be reduced to form at least one 
metal structure 324 over and in contact with the active layer 
304. The process may be substantially similar to that 
described above with respect to the formation of the at least 
one metal structure 124. The at least one metal structure 324 
may be substantially similar to the at least one metal structure 
124 described above and may be formed of a plurality of 
metal particles (not shown). Each metal particle of the plu 
rality of metal particles may be discontinuous or discrete 
from each other metal particle of the plurality of metal par 
ticles. Conventional processes (e.g., electroless plating) may, 
optionally, used to increase the size of the metal particles (not 
shown) of the at least one metal structure 324. 
The at least one metal-complexed polymer structure 318 

(FIG. 3C) may, optionally, be exposed to an oxidizing agent 
before forming the at least one metal structure 324. Exposure 
to the oxidizing agent may convert the metal precursor 322 
(FIG. 3C) within the at least one metal-complexed polymer 
structure 318 (FIG. 3C) to a metal oxide (not shown), which 
may then be reduced to metal by thermal anneal in a reducing 
atmosphere. The process may be substantially similar to that 
described above in relation to the treatment of the metal 
complexed block copolymer assembly 116. In additional 
embodiments, after exposing the at least one metal-com 
plexed polymer structure 318 (FIG. 3C) to the oxidizing 
agent, the thermal anneal in the reducing atmosphere may be 
omitted, leaving at least one metal-oxide-complexed polymer 
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structure (not shown). Polymer of the metal-oxide-com 
plexed polymer structure (not shown) may be volatilized and 
removed (e.g., by way of athermal anneal) to form at least one 
metal oxide structure. 

In additional embodiments, such as where the active mate 
rial 304 is initially omitted, the at least one metal structure 
324 may beformed over and in contact with the electrode 302, 
in a process substantially similar to that described above in 
relation to forming the at least one metal structure 224. The 
active material 304 may then be formed over and in contact 
with the at least one metal structure 324 and the electrode 302, 
in a process substantially similar to that described above in 
relation to forming the active material 204. 

Accordingly, a method of forming a memory cell may 
include forming a polymer material over an electrode. A 
portion of the polymer material may be removed to form a 
polymer pattern including at least one polymer structure and 
at least one opening. The polymer pattern may be exposed to 
a staining agent to form a metal-complexed polymer pattern 
including at least one metal-complexed polymer structure. 
The metal-complexed polymer pattern may be treated to form 
at least one metal structure. 

Referring to FIG. 3E, a structure 326, such as an electrode 
or contact, may be formed over and in contact with the at least 
one metal structure 324. The structure 326 may be formed 
using conventional deposition (e.g., CVD, ALD, or PVD) and 
patterning (e.g., masking and etching) techniques. The struc 
ture 326 may be substantially similar to the structure 126 
described above. In additional embodiments, such as where 
the active material 304 is formed over and in contact with the 
at least one metal structure 324 and the electrode 302, the 
structure 326 may be formed over and in contact with the 
active material 304 at a position overlying the at least one 
metal structure 324, in a process substantially similar to that 
described above in relation to forming the structure 226. 

FIGS. 4A through 4G, are simplified partial cross-sectional 
views of a semiconductor device structure 400 illustrating 
embodiments of yet still another method of forming at least 
one metal structure for a semiconductor device structure, 
such as an active electrode of a memory cell (e.g., for a 
CBRAM device), a conductive interface in a via, or a nucle 
ation site. Referring to FIG. 4A, the semiconductor device 
structure 400 may include an electrode 402 and a patterned 
dielectric material 404. The patterned dielectric material 404 
may be formed over and in contact with the electrode 402. 
The electrode 402 may be substantially similar to the elec 
trode 102 described above, and may be formed in, on, or over 
a substrate (not shown) using conventional techniques, such 
as PVD, CVD, or ALD. The patterned dielectric material 404 
may include at least one dielectric structure 406 and at least 
one opening 408. The at least one opening 408 may be defined 
by a surface 405 of the electrode 404 and at least one sidewall 
407 of the at least one dielectric structure 406. Theat leastone 
dielectric structure 406 may, by way of non-limiting example, 
include at least one of silicon oxynitride (SiON), silicon 
nitride (Si,Na), silicon dioxide (SiO2), another oxide mate 
rial, and another polymer material. In at least some embodi 
ments, the dielectric structure 406 is formed from SisNa. The 
patterned dielectric material 404 may be formed using con 
ventional deposition and patterning techniques, such as PVD, 
CVD, or ALD deposition followed by masking and etching. A 
conformal film of active material (not shown) may, option 
ally, beformed over and in contact with the patterned dielec 
tric material 404 (e.g., the conformal film of active material 
may cover surfaces of the at least one dielectric structure 406 
and the surface 405 of the electrode 404). If present, the 
conformal film of active material (not shown) may be sub 
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form an assembly 505 including the polymer material 512 
and the dielectric structure 506. The polymer material 512 
may be substantially similar to the polymer material 306 
described above. In at least some embodiments, the polymer 
material 512 is P2VP. The polymer material 512 may be 
selectively grafted over and in contact with the portion of the 
surface 510 by conventional grafting techniques. As a non 
limiting example, the polymer material 512 may be prepared 
with end groups (e.g., hydroxyl groups) that may interact 
(e.g., by forming covalent bonds) with the surface 510 of the 
electrode 502. The dielectric structure 506 may be substan 
tially non-reactive with the polymer material 512 such that 
the polymer material 512 does not become grafted to the at 
least one sidewall 511 of the dielectric structure 506. A suit 
able rinse may, optionally, be performed to remove portions 
of the polymer material 512 not grafted to the surface 510 of 
the electrode 502. 

Referring to FIG. 5C, the assembly 505 (FIG. 5B) may be 
exposed to a staining agent 514 to form a metal-complexed 
assembly 516 including at least one metal-complexed poly 
mer structure 518 and the at least one dielectric structure 506 
(i.e., a non-metal-complexed structure). The staining agent 
514 and process of forming the metal-complexed assembly 
516 may be substantially similar to the staining agent 114 and 
process of forming of the metal-complexed copolymer 
assembly 116 described above. However, whereas the stain 
ing agent 114 may enable selective coupling of the metal 
precursor 122 included therein with the polymer of the at least 
one minority domain 110, the staining agent 514 may enable 
the selective coupling of a metal precursor 520 included 
therein with the polymer of the at least one polymer material 
512 (FIG. 5B). 

Referring to FIG. 5D, polymer material may be volatized 
and removed from the at least one metal-complexed polymer 
structure 518 (FIG. 5C), and the metal precursor 520 (FIG. 
5C) present therein may be reduced to form at least one metal 
structure 522 over and in contact with the electrode 502. The 
at least one metal structure 522 may include a plurality of 
metal particles (not shown). Each metal particle of the plu 
rality of metal particles may be discontinuous or discrete 
from each other metal particle of the plurality of metal par 
ticles. Conventional processes (e.g., electroless plating) may, 
optionally, be used to increase the size of the metal particles 
(not shown) of the at least one metal structure 522. The 
process of forming the metal structure 522 may be substan 
tially similar to that described above with respect to the for 
mation the at least one metal structure 124. However, as 
depicted in FIG. 5D, the at least one dielectric structure 506 
may remain following the process. 

The at least one metal-complexed polymer structure 518 
(FIG. 5C) may, optionally, be exposed to an oxidizing agent 
before forming the at least one metal structure 522. Exposure 
to the oxidizing agent may convert the metal precursor 520 
(FIG.5C) within the at least metal-complexed polymer struc 
ture 518 (FIG. 5C) to a metal oxide (not shown), which may 
then be reduced to metal by thermal anneal in a reducing 
atmosphere. The process may be substantially similar to that 
described above in relation to the treatment of the metal 
complexed block copolymer assembly 116. In additional 
embodiments, after exposing the at least one metal-com 
plexed polymer structure 518 (FIG. 5C) to the oxidizing 
agent, the thermal anneal in the reducing atmosphere may be 
omitted, leaving at least one metal-oxide-complexed polymer 
structure (not shown). Polymer of the at least one metal 
oxide-complexed polymer structure (not shown) may be 
volatilized and removed (e.g., by way of a thermal anneal) to 
form at least one metal oxide structure. 
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16 
Accordingly, a method of forming a memory cell may 

include forming a patterned dielectric material including at 
least one dielectric structure and at least one opening over an 
electrode. A polymer material may be formed over and in 
contact with at least a surface of the electrode exposed by the 
at least one opening. The at least one dielectric structure and 
the polymer material may be exposed to a staining agent to 
form a metal-complexed assembly including at least one 
metal-complexed polymer structure. The metal-complexed 
assembly may be treated to form at least one metal structure. 

Referring next to FIG. 5E, an active material 524 may be 
formed over and in contact with the at least one metal struc 
ture 522 and the at least one dielectric structure 506. The 
active material 524 may be formed using conventional tech 
niques, such as CVD, PVD, or ALD. The active material 524 
may be substantially similar to the active material 104 
described above. In additional embodiments, the at least one 
dielectric structure 506 may be removed and the active mate 
rial 524 may be formed over and in contact with the at least 
one metal structure and the electrode 502. As shown in FIG. 
5F, a structure 526, such as an electrode or contact, may be 
formed over and in contact with at least a portion of the active 
material 524 at a position overlying the at least one metal 
structure 522. The structure 526 may be substantially similar 
to the structure 126 described above, and may be formed 
using conventional deposition (e.g., CVD, ALD, or PVD) and 
patterning (e.g., masking and etching) techniques. At least a 
portion of the structure 526 may also contact the at least one 
dielectric structure 506, if present. 
The methods of the present disclosure advantageously 

reduce metal processing, decrease material deposition vari 
ability relative to conventional selective deposition technolo 
gies, such as electroless plating, and enable the formation of 
semiconductor structures, memory cells, and semiconductor 
devices that exhibit increased reliability, performance, and 
durability. In addition, the methods of the present disclosure 
enable the deposition of material on electrochemically inac 
tive materials (e.g., dielectric materials, such as oxide mate 
rials) where conventional selective deposition technologies, 
such as electroless plating, may be substantially ineffective. 
Structures (e.g., metal structures, or metal oxide structures) 
may be formed in desired locations on a substantially planar 
material (e.g., an electrode (i.e., a conductive material) or an 
active material), or in openings in a patterned material (e.g., a 
patterned dielectric material) that overlies a substantially pla 
nar material. 
The following examples serve to explain embodiments of 

the present disclosure in more detail. The examples are not to 
be construed as being exhaustive or exclusive as to the scope 
of the disclosure. 

EXAMPLES 

Example 1 

Two solutions of 1% P2PV in 10:1 tetrahydrofuran:di 
emthylformamide were prepared. One solution included 10 
wt % copper(II) chloride (CuCl2). The other solution 
included 2 wt % CuCl2. Coupon samples were prepared by 
spin-coating the solutions onto a substrate stack including 
silicon (“Si’’, 95 Å), a pad oxide layer (“PADOX”, 300 A), 
nitride (30 A), and zirconium oxide (“ZrOx”). Samples 
including each of the above concentrations of CuCl2 were 
thermally annealed for 10 minutes at 750° C. under an atmo 
sphere of either ammonia (NHA) or 3.8% hydrogen (H2) in 
argon (Ar) according to Table 2 below. 
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TABLE 2 

Sample Data 

Sample wt % CuCl2 Reducing atmosphere 

F 10 H2 
H 10 NHs 
J 2 H2 
L 2 NH, 

After the thermal anneal the samples were inspected by 
scanning electron micrograph (SEM), Auger electron spec 
troscopy, and XPS. SEM imagery of samples F, H, and J 
showed the formation of white particles. FIG. 6A is a scan 
ning electron micrograph (SEM) image showing a top-down 
view of white particles formed from the sample F. FIG. 6B is 
a magnified SEM image showing a top-down view of a single 
white particle formed from sample Fillustrating the two areas 
used for Auger analysis. The chart of Auger analysis of 
sample Fis shown in FIG. 7A. Particles formed from samples 
H and J had similar results. An Auger electron map of the 
white particle shown in FIG. 6B is shown in FIG. 7B. The 
XPS analysis results are shown in Table 3 below. In Table 3, 
samples 1, 2, 3, and 4 respectively correspond to samples F. H. 
J, and L of Table 2. The Auger and XPS analysis results 
showed that the white particles formed from sample F (i.e., 
sample 1 in Table 3 below) were copper and had both CuO and 
either Cu2O or Cu(0) metal composition. No chlorine atoms 
were detected, indicating that the particles were fully reduced 
and then subsequently re-oxidized by atmospheric oxygen. 
The particles formed from samples F, H, J, and L had center 
diameters ranging from about 50 nm to about 250 nm. 

TABLE 3 

XPS Analysis Data 

Surface elemental concentrations (in atom 9% 

Sample C N O F So Zr Cu(o)/Cu(I) Cu(II) 

1 14.8 8.6 49.0 0.5 8.4 16.4 0.8 1.5 
2 39.9 3.0 32.5 10.3 3.2 11.2 ND ND 
3 16.2 7.4 49.5 0.5 8.3 18.0 ND ND 
4 32.2 2.7 44.3 0.6 7.0 13.2 ND ND 

Example 2 

Two solutions of 1% PS-P2PV in 10:1 tetrahydrofuran: 
diemthylformamide were prepared. One solution included 10 
wt % copper(II) chloride (CuCl2). The other solution 
included 2 wt % CuCl2. Coupon samples were prepared by 
spin-coating the solutions onto a substrate stack including Si 
(95 Å), PADOX (300 Å), nitride (30 A), and ZrOx. Two 
samples, one for each of the above concentrations of CuCl2, 
were thermally annealed for 10 minutes at 750° C. under an 
atmosphere of 3.8% hydrogen (H2) in argon (Ar). 

After the thermal anneal the samples was inspected by 
scanning electron micrograph (SEM) and Auger electron 
spectroscopy. SEM imagery for each of the sample including 
10 wt % CuCl2 loading and the sample including 2 wt % 
CuCl2 loading show the formation of white particles. FIGS. 
8A and 8B are SEM images (i.e., at 10 k and 100 k magnifi 
cation, respectively) showing a top-down view of white par 
ticles formed from the sample including 10 wt % CuCl2 
loading. FIGS. 9A and 9B are SEM images (i.e., at 10 k and 
100 k magnification, respectively) showing a top-down view 
of white particles formed from the sample including 2 wt % 
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CuCl2 loading. The sample including 10 wt % CuCl2 loading 
exhibited a greater areal density of white particles, and 
formed particle center diameters ranging from about 20 nm to 
about 100 nm. The sample including 2 wt % CuCl2 loading 
exhibited separated clusters of white particles, and formed 
particle center diameters of about 50 nm. FIG. 10A is a 
scanning electron micrograph (SEM) image showing a top 
down view of white particles formed from a sample B includ 
ing 2 wt % CuCl2. FIG. 10B is a magnified SEM image 
showing a top-down view of a single white particle formed 
from sample B illustrating the two areas used for Auger 
analysis. The chart of Auger analysis of sample B is shown in 
FIG. 11A. An Auger electron map of the white particle shown 
in FIG. 10B is shown in FIG. 11B. The Auger analysis results 
showed that the white particles formed from sample B were 
copper. 

While the present disclosure is susceptible to various modi 
fications and alternative forms, specific embodiments have 
been shown by way of example in the drawings and have been 
described in detail herein. However, the present disclosure is 
not intended to be limited to the particular forms disclosed. 
Rather, the present disclosure is to cover all modifications, 
equivalents, and alternatives falling within the scope of the 
present disclosure as defined by the following appended 
claims and their legal equivalents. 

What is claimed is: 
1. A method of forming a semiconductor device structure, 

comprising: 
forming a block copolymer assembly comprising at least 
two different domains over an electrode: 

selectively coupling at least one metal precursor to the 
block copolymer assembly to form a metal-complexed 
block copolymer assembly comprising at least one 
metal-complexed domain and at least one non-metal 
complexed domain; and 

annealing the metal-complexed block copolymerassembly 
to form at least one metal structure over the electrode. 

2. The method of claim 1, whereinforming a block copoly 
mer assembly comprises: 

applying a block copolymer material comprising at least 
two different polymer blocks over the electrode; and 

separating the at least two different polymer blocks to form 
the at least two different domains, each of the domains 
comprising at least one of the different polymer blocks. 

3. The method of claim 1, wherein forming the block 
copolymerassembly comprises forming the block copolymer 
assembly such that at least one of the at least two different 
domains extends linearly along a direction normal to a planar 
surface of the electrode. 

4. The method of claim 1, further comprising forming an 
active material between the electrode and the block copoly 
mer assembly. 

5. The method of claim 1, further comprising forming a 
structure comprising at least one of a metal, a metal alloy, and 
a metal oxide over and in contact with the at least one metal 
Structure. 

6. The method of claim 1, further comprising: 
forming an active material comprising a solid state elec 

trolyte material over the at least one metal structure and 
the electrode; and 

forming a structure over the active material at a position 
overlying the at least one metal structure. 

7. The method of claim 1, wherein selectively coupling the 
at least one metal precursor to the block copolymer assembly 
comprises exposing the block copolymer assembly to a stain 
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ing agent comprising a solvent and at least one of an elemen 
tal metal, an elemental metalloid, and a metal-containing 
compound. 

8. The method of claim 7, wherein exposing the block 
copolymer assembly to the staining agent comprises expos 
ing the block copolymerassembly to an aqueous acid solution 
comprising a metal-containing compound having anionic 
functionality. 

9. The method of claim 8, wherein exposing the block 
copolymer assembly to the staining agent comprises expos 
ing the block copolymer assembly to an aqueous base solu 
tion comprising a metal-containing compound having cat 
ionic functionality. 

10. The method of claim 1, wherein selectively coupling at 
least one metal precursor to the block copolymer assembly 
comprises exposing the block copolymer assembly to a stain 
ing agent comprising at least one of a copper compound and 
a silver compound. 

11. The method of claim 1, wherein annealing the metal 
complexed block copolymer assembly comprises exposing 
the metal-complexed block copolymer assembly to a tem 
perature within a range of from about 250°C. to about 750°C. 
in a reducing atmosphere. 

12. The method of claim 1, wherein the at least one metal 
structure comprises a plurality of metal particles. 

13. The method of claim 1, further comprising exposing the 
metal-complexed block copolymer assembly to an oxidizing 
agent before annealing the metal-complexed block copoly 
mer assembly. 

14. The method of claim 1, wherein forming a block 
copolymer assembly comprises: 

applying a block copolymer material comprising a hydro 
philic block and a hydrophobic block over the electrode; 
and 

phase-separating the hydrophilic block and the hydropho 
bic block to form a hydrophilic domain and a hydropho 
bic domain. 

15. The method of claim 1, wherein forming a block 
copolymer assembly comprises: 

applying polystyrene-block-poly-2-vinylpyridine over the 
electrode; and 

annealing the polystyrene-block-poly-2-vinylpyridine. 
16. The method of claim 1, wherein forming a block 

copolymer assembly comprises forming one of the at least 
two different domains to have cationic functionality, and 
wherein selectively coupling at least one metal precursor to 
the block copolymer assembly comprises exposing the block 
copolymer assembly to at least one of silver (I) nitrate and 
copper (I) chloride. 

17. The method of claim 1, wherein forming a block 
copolymer assembly comprises forming one of the at least 
two different domains to have anionic functionality, and 
wherein selectively coupling at least one metal precursor to 
the block copolymer assembly comprises exposing the block 
copolymer assembly to at least one of ammonium silver (I) 
thiosulfate and copper (II) chloride. 

18. The method of claim 1, wherein selectively coupling 
the at least one metal precursor to the block copolymerassem 
bly comprises exposing the block copolymer assembly to a 
staining agent comprising at least one of copper, silver, ruthe 
nium, cobalt, nickel, titanium, tungsten, tantalum, molybde 
num, platinum, palladium, iridium, gold, iron, silicon, and 
germanium. 

19. The method of claim 1, wherein annealing the metal 
complexed block copolymer assembly comprises exposing 
the metal-complexed assembly to a reducing atmosphere and 
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a temperature greater than or equal to a decomposition tem 
perature of polymer material of the metal-complexed block 
copolymer assembly. 

20. The method of claim 1, further comprising exposing the 
metal-complexed block copolymerassembly to at least one of 
air, oxygen, nitrogen dioxide, water, nitrous oxide, dinitrogen 
tetroxide, and ozone before annealing the metal-complexed 
block copolymer assembly. 

21. The method of claim 1, further comprising: 
forming an active material comprising at least one of a 

chalcogenide compound, a transition metal oxide, and a 
silicon oxide on the at least one metal structure and the 
electrode; and 

forming at least one structure on the active material at a 
position overlying the at least one metal structure. 

22. A method of forming a semiconductor device structure, 
comprising: 

forming a block copolymerassembly over an electrode, the 
block copolymer assembly comprising: 
a first domain formulated to interact with a metal pre 

cursor through at least one of chelation, other ligand 
interactions, and coulombic interactions; and 

a second domain formulated to not interact with the 
metal precursor through at least one of chelation, 
other ligand interactions, and coulombic interactions; 

exposing the block copolymer assembly to the metal pre 
cursor to form a metal-complexed assembly comprising 
a metal-complexed domain and a non-metal-complexed 
domain; and 

treating the metal-complexed assembly to form at least one 
of a metal structure and a metal oxide structure over the 
electrode. 

23. The method of claim 22, wherein forming a block 
copolymer assembly comprises forming the first domain to 
comprise unsaturated organic groups and at least one element 
of Groups VA and VIA of the Periodic Table of Elements. 

24. The method of claim 22, wherein forming a block 
copolymer assembly comprises forming the first domain to 
comprise a polymer having pyridine functional groups. 

25. The method of claim 22, wherein forming a block 
copolymer assembly comprises forming the first domain to 
comprise poly(vinylpyridine). 

26. The method of claim 22, wherein forming a block 
copolymer assembly comprises forming the first domain to 
comprise a polymer having at least one of carboxylic acid 
groups and thiol groups. 

27. The method of claim 22, wherein forming a block 
copolymer assembly comprises forming the first domain to 
comprise poly((meth)acrylic acid). 

28. The method of claim 22, wherein forming a block 
copolymer assembly comprises forming the second domain 
to comprise polystyrene. 

29. The method of claim 22, wherein treating the metal 
complexed assembly comprises annealing the metal-com 
plexed assembly to form the metal structure over the elec 
trode. 

30. The method of claim 22, wherein treating the metal 
complexed assembly comprises: 

exposing the metal-complexed assembly to an oxidizing 
agent to form a metal-oxide-complexed block copoly 
mer assembly; and 

annealing the metal-oxide-complexed block copolymer 
assembly to form the metal oxide structure over the 
electrode. 


