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GENERIC ROBOT ARCHITECTURE portable to a variety of robot platforms and is configured to 

control a robot at a variety of interaction levels and across a 
CONTRACTUAL ORIGIN OF THE INVENTION diverse range of robot behaviors. 

This invention was made with government support under 5 

Contract No. DE-AC07-05-ID14517 awarded by the United 

States Department of Energy. The government has certain 

rights in the invention. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 

The present invention relates generally to robotics and, 

more specifically, to software architectures for realizing an 

intelligence kernel for robots. 

2. State of the Art 

Historically, robot behaviors have been created for specific 

tasks and applications. These behaviors have generally been 

reinvented time and again for different robots and different 

applications. There has been no sustained attempt to provide 

a kernel of basic robot competence and decision making that 

can be used to bootstrap development across many different 

applications. 

Some architectures have been proposed that provide a 

generic application programming interface (API) for query- 

ing various sensors and commanding various actuators; how- 

ever, many of these architectures have been limited to raw 

inputs and outputs rather than provide the intelligence and 

behavior to a robot. As a result, the behavior functionality 
created for one robot may not be easily ported to new robots. 

Other architectures have been proposed to allow limited 

behaviors to port across different robot platforms, but these 

have generally been limited to specific low-level control sys- 

tems. 

The problem with robots today is that they are not very 

bright. Current robot "intelligence" is really just a grab-bag of 

programmed behaviors to keep mobile robots from doing 

stupid things, like getting stuck in comers or running into 
obstacles. The promise of wireless robots is that they can be 

sent into remote situations that are too difficult or dangerous 

for humans. The reality is that today’s robots generally lack 

the ability to make any decisions on their own and rely on 

continuous guidance by human operators watching live video 

from on-board cameras. 

Most commercial robots operate on a master/slave prin- 

ciple. A human operator completely controls the movement 

of the robot from a remote location using robot-based sensors 

such as video and Global Positioning System (GPS). This 
setup often requires more than one operator per robot to 

navigate around obstacles and achieve a goal. As a result, very 
skilled operators may be necessary to reliably direct the robot. 

Furthermore, the intense concentration needed for control- 
ling the robot can detract from achieving mission goals. 

Although it has been recognized that there is a need for 

adjustable autonomy, robot architectures currently do not 

exist that provide a foundation of autonomy levels upon 

which to build intelligent robotic capabilities. Furthermore, 

robot architectures do not currently exist that provide a foun- 

dation of generic robot attributes for porting to a variety of 

robot platforms. 

Therefore, there is a need for a generic scalable robot 

architecture that provides a framework that is easily portable 

to a variety of robot platforms and is configured to not only 

provide hardware abstractions but also provide abstractions 

for generic robot attributes and robot behaviors. 

In addition, there is a need for a robot intelligence kernel 

that provides a framework of dynamic autonomy that is easily 

BRIEF SUMMARY OF THE INVENTION 

The present invention provides methods, computer read- 

able media, and apparatuses for a generic robot architecture 

10 that provides a framework that is easily portable to a variety of 

robot platforms and is configured to not only provide hard- 

ware abstractions but also provide abstractions for generic 

robot attributes, environment abstractions, and robot behav- 

iors. 
15 

An embodiment of the present invention comprises a 

method for providing a generic robot architecture for robot 

control software. The method includes providing a hardware 

abstraction level and providing a robot abstraction level. The 

2o hardware abstraction level is configured for developing a 

plurality of hardware abstractions that define, monitor, and 

control a plurality of hardware modules available on a robot 

platform. The robot abstraction level is configured for defin- 

25 
ing a plurality of robot attributes and provides a software 

framework for building robot behaviors from the plurality of 

robot attributes. Each of the robot attributes includes hard- 

ware information from at least one of the plurality of hard- 

ware abstractions. In addition, each robot attribute is config- 

3o ured to substantially isolate the robot behaviors from the 
plurality of hardware abstractions. 

Another embodiment of the present invention comprises a 

computer readable medium having computer executable 

instructions thereon, which when executed on a processor 

35 provide a generic robot architecture. The generic robot archi- 

tecture includes a hardware abstraction level and a robot 

abstraction level. The hardware abstraction level is config- 

ured for developing a plurality of hardware abstractions that 

define, monitor, and control a plurality of hardware modules 
40 

available on a robot platform. The robot abstraction level is 

configured for defining a plurality of robot attributes and 

provides a software framework for building robot behaviors 

from the plurality of robot attributes. Each of the robot 

45 attributes includes hardware information from at least one of 
the plurality of hardware abstractions. In addition, each robot 

attribute is configured to substantially isolate the robot behav- 

iors from the plurality of hardware abstractions. 

Another embodiment of the present invention comprises a 
50 robot platform including at least one perceptor configured for 

perceiving environmental variables of interest, at least one 

locomotor configured for providing mobility to the robot 

platform, and a system controller configured for executing a 

generic robot architecture. The generic robot architecture 
55 includes a hardware abstraction level and a robot abstraction 

level. The hardware abstraction level is configured for devel- 

oping a plurality of hardware abstractions that define, moni- 

tor, and control a plurality of hardware modules available on 

60 the robot platform. The robot abstraction level is configured 

for defining a plurality of robot attributes and provides a 

software framework for building robot behaviors from the 

plurality of robot attributes. Each of the robot attributes 

includes hardware information from at least one of the plu- 

65 rality of hardware abstractions. In addition, each robot 
attribute is configured to substantially isolate the robot behav- 

iors from the plurality of hardware abstractions. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

In the &awings, which illustrate what is currently consid- 

ered to be the best mode for carrying out the invention: 
FIG. 1 illustrates a representative robot platform embodi- 

ment of the present invention; 

FIG. 2 illustrates a representative robot control environ- 

ment including a plurality of robot platforms and a robot 

controller; 
FIG. 3 is a software architecture diagram illustrating sig- 

nificant components of embodiments of the present inven- 

tion; 
FIG. 4 illustrates representative hardware abstractions of 

hardware modules that may be available on robot platforms; 

FIG. 5 illustrates a robot abstraction level including robot 
attributes that may be available on robot platforms; 

FIG. 6 illustrates a representative embodiment of how a 

range abstraction may be organized; 

FIG. 7 illustrates an occupancy grid map that may be devel- 

oped by embodiments of the present invention; 

FIG. 8 illustrates representative robot behavioral compo- 

nents that may be available on robot platforms; 

FIG. 9 illustrates representative cognitive conduct compo- 

nents that may be available on robot platforms; 

FIG. 10A illustrates how tasks may be allocated between 

an operator and a robot according to embodiments of the 

present invention; 

FIG. 10B illustrates various cognitive conduct, robot 

behaviors, robot attributes, and hardware abstractions that 
may be available at different levels of robot autonomy; 

FIG. 11 illustrates a portion of representative processing 

that may occur in developing robot attributes and communi- 

cating those attributes; 

FIG. 12 illustrates a representative example of communi- 

cation paths between various hardware abstractions, robot 

abstractions, and environment abstractions; 
FIG. 13 illustrates a representative example of communi- 

cation paths between robot abstractions, environment 

abstractions, robot behaviors, and robot conduct; 
FIG. 14 is a software flow diagram illustrating components 

of an algorithm for performing a guarded motion behavior; 
FIG. 15 is a software flow diagram illustrating components 

of an algorithm for performing translational portions of an 

obstacle avoidance behavior; 
FIG. 16 is a software flow diagram illustrating components 

of an algorithm for performing rotational portions of the 

obstacle avoidance behavior; 
FIG. 17 is a software flow diagram illustrating components 

of an algorithm for performing a get unstuck behavior; 

FIG. 18 is a software flow diagram illustrating components 

of an algorithm for performing a real-time occupancy change 

analysis behavior; 

FIG. 19 is a block diagram of a robot system for imple- 

menting a virtual track for a robot, in accordance with an 

embodiment of the present invention; 

FIG. 20 illustrates a user interface for designating a desired 

path representative of a virtual track for a robot, in accordance 

with an embodiment of the present invention; 

FIG. 21 is a process diagram for configuring a desired path 

into a waypoint file for execution by a robot, in accordance 

with an embodiment of the present invention; 

FIG. 22 illustrates a user interface for further processing 

the desired path into a program for execution by a robot, in 

accordance with an embodiment of the present invention; 

FIG. 23 is a diagram illustrating transformation from a 

drawing file to a program or waypoint file, in accordance with 

an embodiment of the present invention; 

4 
FIG. 24 is a process diagram of a control process of a robot, 

in accordance with an embodiment of the present invention; 

FIG. 25 is a flowchart of a method for implementing a 

virtual track for a robot, in accordance with an embodiment of 
5 the present invention; 

FIG. 26 is a software flow diagram illustrating components 

of an algorithm for handling a waypoint follow behavior: 

FIG. 27 is a software flow diagram illustrating components 

of an algorithm for performing translational portions of the 
10 waypoint follow behavior; 

FIG. 28 is a software flow diagram illustrating components 

of an algorithm for performing rotational portions of the 

waypoint follow behavior; 

FIG. 29 is a software flow diagram illustrating components 
15 of an algorithm for performing a follow conduct; 

FIGS. 30A and 30B are a software flow diagram illustrat- 

ing components of an algorithm for performing a counter- 

mine conduct; 

FIG. 31 is a block diagram of a robot system, in accordance 
2o with an embodiment of the present invention; 

FIG. 32 illustrates a multi-robot user interface for operator 

interaction, in accordance with an embodiment of the present 

invention; 

FIG. 33 illustrates a video window of the multi-robot user 
25 

interface, in accordance with an embodiment of the present 

invention; 

FIG. 34 illustrates a sensor status window of the multi- 

robot user interface, in accordance with an embodiment of the 

30 present invention; 
FIG. 35 illustrates an autonomy control window of the 

multi-robot user interface, in accordance with an embodiment 
of the present invention; 

FIG. 36 illustrates a robot window of the multi-robot user 

35 
interface, in accordance with an embodiment of the present 

invention; 

FIG. 37 illustrates a dashboard window of the multi-robot 

user interface, in accordance with an embodiment of the 
present invention; 

4o FIG. 38 illustrates an emerging map window of the multi- 
robot user interface, in accordance with an embodiment of the 
present invention; and 

FIG. 39 illustrates control processes within the robots and 

user interface system, in accordance with an embodiment of 

45 the present invention. 

DETAILED DESCRIPTION OF THE INVENTION 

The present invention provides methods and apparatuses 
5o for a robot intelligence kernel that provides a framework of 

dynamic autonomy that is easily portable to a variety of robot 
platforms and is configured to control a robot at a variety of 
interaction levels and across a diverse range of robot behav- 
iors. 

55 In the following description, circuits and functions may be 
shown in block diagram form in order not to obscure the 
present invention in unnecessary detail. Conversely, specific 
circuit implementations shown and described are exemplary 
only and should not be construed as the only way to imple- 

6o ment the present invention unless specified otherwise herein. 
Additionally, block definitions and partitioning of logic 
between various blocks is exemplary of a specific implemen- 
tation. It will be readily apparent to one of ordinary skill in the 
art that the present invention may be practiced by numerous 

65 other partitioning solutions. For the most part, details con- 
cerning timing considerations, and the like, have been omit- 
ted where such details are not necessary to obtain a complete 
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understanding of the present invention and are within the 

abilities of persons of ordinary skill in the relevant art. 

In this description, some drawings may illustrate signals as 

a single signal for clarity of presentation and description. It 
will be understood by a person of ordinary skill in the art that 

the signal may represent a bus of signals, wherein the bus may 

have a variety of bit widths and the present invention may be 

implemented on any number of data signals including a single 

data signal. 

Furthermore, in this description of the invention, reference 

is made to the accompanying drawings which form a part 

hereof, and in which is shown, by way of illustration, specific 

embodiments in which the invention may be practiced. The 

embodiments are intended to describe aspects of the inven- 

tion in sufficient detail to enable those skilled in the art to 

practice the invention. Other embodiments may be utilized 

and changes may be made without departing from the scope 

of the present invention. The following detailed description is 

not to be taken in a limiting sense, and the scope of the present 

invention is defined only by the appended claims. 

Headings are included herein to aid in locating certain 

sections of detailed description. These headings should not be 

considered to limit the scope of the concepts described under 

any specific heading. Furthermore, concepts described in any 

specific heading are generally applicable in other sections 

throughout the entire specification. 

1. Hardware Environment 

FIG. 1 illustrates a representative robot platform 100 

(which may also be referred to herein as a robot system) 

including the present invention. A robot platform 100 may 

include a system controller 110 including a system bus 150 

for operable coupling to one or more communication devices 

155 operably coupled to one or more communication chan- 

nels 160, one or more perceptors 165, one or more manipu- 

lators 170, and one or more locomotors 175. 
The system controller 110 may include a processor 120 

operably coupled to other system devices by internal buses 

(122, 124). By way of example and not limitation, the pro- 

cessor 120 may be coupled to a memory 125 through a 
memory bus 122. The system controller 110 may also include 

an internal bus 124 for coupling the processor 120 to various 

other devices, such as storage devices 130, local input devices 

135, local output devices 140, and local displays 145. 

Local output devices 140 may be devices such as speakers, 

status lights, and the like. Local input devices 135 may be 

devices such as keyboards, mice, joysticks, switches, and the 

like. 

Local displays 145 may be as simple as light-emitting 

diodes indicating status of functions of interest on the robot 

platform 100, or may be as complex as a high resolution 

display terminal. 

The communication channels 160 may be adaptable to 
both wired and wireless communication, as well as support- 

ing various communication protocols. By way of example 

and not limitation, the communication channels may be con- 

figured as a serial or parallel communication channel, such as, 

for example, USB, IEEE-1394, 802.11a/b/g, cellular tele- 

phone, and other wired and wireless communication proto- 

cols. 

The perceptors 165 may include inertial sensors, thermal 

sensors, tactile sensors, compasses, range sensors, sonar per- 

ceptors, Global Positioning System (GPS), Ground Penetrat- 

ing Radar (GPR), lasers for object detection and range sens- 

ing, imaging devices, and the like. Furthermore, those of 

ordinary skill in the art will understand that many of these 

sensors may include a generator and a sensor to combine 

6 
sensor inputs into meaningful, actionable perceptions. For 

example, sonar perceptors and GPR may generate sound 

waves or sub-sonic waves and sense reflected waves. Simi- 

larly, perceptors including lasers may include sensors config- 
5 ured for detecting reflected waves from the lasers for deter- 

mining interruptions or phase shifts in the laser beam. 

Imaging devices may be any suitable device for capturing 

images, such as, for example, an infrared imager, a video 

10 
camera, a still camera, a digital camera, a Complementary 

Metal Oxide Semiconductor (CMOS) imaging device, a 

charge-coupled device (CCD) imager, and the like. In addi- 

tion, the imaging device may include optical devices for 

modifying the image to be captured, such as, for example, 

15 lenses, collimators, filters, and mirrors. For adjusting the 
direction at which the imaging device is oriented, a robot 

platform 100 may also include pan and tilt mechanisms 

coupled to the imaging device. Furthermore, a robot platform 

100 may include a single imaging device or multiple imaging 

20 devices. 

The manipulators 170 may include vacuum devices, mag- 

netic pickup devices, arm manipulators, scoops, grippers, 

camera pan and tilt manipulators, and the like. 

The locomotors 175 may include one or more wheels, 
25 tracks, legs, rollers, propellers, and the like. For providing the 

locomotive power and steering capabilities, the locomotors 

175 may be driven by motors, actuators, levers, relays and the 

like. Furthermore, perceptors 165 may be configured in con- 

junction with the locomotors 175, such as, for example, 
3o odometers and pedometers. 

FIG. 2 illustrates a representative robot control environ- 

ment including a plurality of robot platforms (100A, 100B, 

and 100C) and a robot controller 180. The robot controller 

35 
180 may be a remote computer executing a software interface 

from which an operator may control one or more robot plat- 

forms (100A, 100B, and 100C) individually or in coopera- 

tion. The robot controller 180 may communicate with the 

robot platforms (100A, 100B, and 100C), and the robot plat- 

40 
forms (100A, 100B, and 100C) may communicate with each 

other, across the communication channels 160. While FIG. 2 
illustrates one robot controller 180 and three robot platforms 

(100A, 100B, and 100C) those of ordinary skill in the art will 

recognize that a robot control environment may include one 

45 
or more robot platforms 100 and one or more robot controllers 

180. In addition, the robot controller 180 may be a version of 

a robot platform 100. 

Software processes illustrated herein are intended to illus- 

trate representative processes that may be performed by the 

5o robot platform 100 or robot controller 180. Unless specified 
otherwise, the order in which the processes are described is 

not intended to be construed as a limitation. Furthermore, the 
processes may be implemented in any suitable hardware, 

software, firmware, or combinations thereof. By way of 

55 example, software processes may be stored on the storage 
device 130, transferred to the memory 125 for execution, and 

executed by the processor 120. 

When executed as firmware or software, the instructions 
for performing the processes may be stored on a computer 

6o readable medium (i.e., storage device 130). A computer read- 

able medium includes, but is not limited to, magnetic and 

optical storage devices such as disk drives, magnetic tape, 

CDs (compact disks), DVDs (digital versatile discs or digital 

video discs), and semiconductor devices such as RAM (Ran- 
65 dom Access Memory), DRAM (Dynamic Random Access 

Memory), ROM (Read-Only Memory), EPROM (Erasable 

Programmable Read-Only Memory), and Flash memory. 
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2. Generic Robot Abstraction Architecture 

Conventionally, robot architectures have been defined for 

individual robots and generally must be rewritten or modified 

to work with different sensor suites and robot platforms. This 

means that adapting the behavior functionality created for 

one robot platform to a different robot platform is problem- 

atic. Furthermore, even architectures that propose a hardware 

abstraction layer to create a framework for accepting various 

hardware components still may not create a robot abstraction 

layer wherein the abstractions presented for high level behav- 

ioral programming are in terms of actionable components or 
generic robot attributes rather than the hardware present on 

the robot. 

A notable aspect of the present invention is that it collates 

the sensor data issued from hardware or other robotic archi- 

tectures into actionable information in the form of generic 

precepts. Embodiments of the present invention may include 

a generic robot architecture (GRA), which comprises an 

extensible, low-level framework, which can be applied across 

a variety of different robot hardware platforms, perceptor 

suites, and low-level proprietary control application pro- 
gramming interfaces (APIs). By way of example, some of 

these APIs may be Mobility, Aria, Aware, Player, etc.). 

FIG. 3 is a software architecture diagram 200 illustrating 

significant components of the GRA as a multi-level abstrac- 

tion. Within the GRA, various levels of abstraction are avail- 
able for use in developing robot behavior at different levels of 

dynamic autonomy 290. The object oriented structure of the 

GRA may be thought of as including two basic levels. As is 

conventional in object oriented class structures, each subse- 

quent level inherits all of the functionality of the higher levels. 

At the lower level, the GRA includes a hardware abstrac- 
tion level, which provides for portable, object oriented access 

to low-level hardware perception and control modules that 

may be present on a robot. The hardware abstraction level is 

reserved for hardware specific classes and includes, for 

example, implementations for the actual robot geometry and 

sensor placement on each robot type. 

Above the hardware abstraction level, the GRA includes a 
robot abstraction level, which provides atomic elements (i.e., 

building blocks) of generic robot attributes and develops a 

membrane between the low-level hardware abstractions and 

controls. This membrane is based on generic robot attributes, 

or actionable components, which include robot functions, 

robot perceptions, and robot status. Each generic robot 

attribute may utilize a variety of hardware abstractions, and 

possibly other robot attributes, to accomplish its individual 

function. 

The robot abstraction level may include implementations 

that are generic to given proprietary low-level APIs. 

Examples of functions in this class level include the interface 

calls for a variety of atomic level robot behaviors such as, for 

example, controlling motion and reading sonar data. 

The GRA enables substantially seamless porting of behav- 

ioral intelligence to new hardware platforms and control APIs 

by defining generic robot attributes and actionable compo- 

nents to provide the membrane and translation between 

behavioral intelligence and the hardware. Once a definition 

for a robot in terms of platform geometries, sensors, and API 

calls has been specified, behavior and intelligence may be 

ported in a substantially seamless manner for future develop- 

ment. In addition, the object oriented structure enables 

straightforward extension of the Generic Robot Architecture 

for defining new robot platforms as well as defining low-level 

abstractions for new perceptors, motivators, communications 

channels, and manipulators. 

8 
The GRA includes an interpreter such that existing and 

new robot behaviors port in a manner that is transparent to 

both the operator and the behavior developer. This interpreter 

may be used to translate commands and queries back and 

5 forth between the operator and robot with a common inter- 

face, which can then be used to create perceptual abstractions 

and behaviors. When the "common language" supported by 

the GRA is used by robot developers, it enables developed 

behaviors and functionality to be interchangeable across mul- 

10 tiple robots. In addition to creating a framework for develop- 

ing new robot capabilities, the GRA interpreter may be used 

to translate existing robot capabilities into the common lan- 

guage so that the behavior can then be used on other robots. 

The GRA is portable across a variety of platforms and pro- 

15 prietary low-level APIs. This is done by creating a standard 

method for commanding and querying robot functionality 

that exists on top of any particular robot manufacturer’s con- 

trol API. Moreover, unlike systems where behavior stems 

from sensor data, the GRA facilitates a consistent or predict- 

2o able behavior output regardless of robot size or type by cat- 

egorizing the robot and sensor data into perceptual abstrac- 

tions from which behaviors can be built. 

The Generic Robot Architecture also includes a scripting 

structure for orchestrating the launch of the different servers 

25 and executables that may be used for running the GRA on a 
particular robot platform. Note that since these servers and 

executables (e.g., laser server, camera server, and base plat- 

form application) will differ from robot to robot, the scripting 

structure includes the ability to easily specify and coordinate 

3o the launch of the files that may be needed for specific appli- 

cations. In addition, the scripting structure enables automatic 

launching of the system at boot time so that the robot is able 

to exhibit functionality without any operator involvement 

(i.e., no need for a remote shell login). 

35 The Generic Robot Architecture may access configuration 

files created for each defined robot type. For example, the 

configuration files may specify what sensors, actuators, and 

APIs are being used on a particular robot. Use of the scripting 

structure together with the configuration enables easy recon- 
4o figuration of the behaviors and functionality of the robot 

without having to modify source code (i.e., for example, 

recompile the C/C++ code). 

The GRA keeps track of which capabilities are available 

(e.g., sensors, actuators, mapping systems, communications) 
45 on the specific embodiment and uses virtual and stub func- 

tions within the class hierarchy to ensure that commands and 

queries pertaining to capabilities that an individual robot does 

not have do not cause data access errors. For example, in a 

case where a specific capability, such as a manipulator, does 

5o not exist, the GRA returns special values indicating to the 

high-level behavioral control code that the command cannot 

be completed or that the capability does not exist. This makes 

it much easier to port seamlessly between different robot 

types by allowing the behavior code to adapt automatically to 

55 different robot configurations. 

The above discussion of GRA capabilities has focused on 

the robot-oriented aspects of the GRA. However, the robot- 

oriented class structure is only one of many class structures 

included in the GRA. For example, the GRA also includes 

6o multi-tiered class structures for communication, range-sens- 

ing, cameras, and mapping. Each one of these class structures 

is set up to provide a level of functional modularity and allow 

different sensors and algorithms to be used interchangeably. 

By way of example and not limitation, without changing the 

65 behavioral code built on the GRA at the robot behavior level, 
it may be possible to swap various mapping and localization 

systems or cameras and yet achieve the same functionality 
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simply by including the proper class modules at the hardware 

abstraction level and possibly at the robot abstraction level. 

Additional capabilities and features of each of the levels of 

the GRA are discussed below. 
2.1. Hardware Abstraction Level 

FIG. 4 illustrates the hardware abstraction level 210, which 
includes representative hardware abstractions of hardware 

modules that may be available on a robot platform. These 

hardware abstractions create an object oriented interface 

between the software and hardware that is modular, reconfig- 

urable, and portable across robot platforms. As a result, a 
software component can create a substantially generic hook 

to a wide variety of hardware that may perform a similar 
function. It will be readily apparent to those of ordinary skill 

in the art that the modules shown in FIG. 4 are a representa- 

tive, rather than comprehensive example of hardware abstrac- 

tions. Some of these hardware abstractions include; action 
abstractions 212 (also referred to as manipulation abstrac- 

tions) for defining and controlling manipulation type devices 

on the robot, communication abstractions 214 for defining 

and controlling communication media and protocols, control 

abstractions 216 (also referred to as locomotion abstractions) 
for defining and controlling motion associated with various 

types of locomotion hardware, and perception abstractions 

218 for defining and controlling a variety of hardware mod- 

ules configured for perception of the robot’s surroundings 

and pose (i.e., position and orientation). 

2.1.1. Manipulation Abstractions 

Action device abstractions 212 may include, for example, 
vacuum devices, magnetic pickup devices, arm manipulators, 

scoops, grippers, camera pan and tilt manipulators, and the 

like. 

2.1.2. Communication Abstractions 
The communication abstractions present substantially 

common communications interfaces to a variety of commu- 

nication protocols and physical interfaces. The communica- 

tion channels 160 may be adaptable to both wired and wire- 
less communication, as well as supporting various 

communication protocols. By way of example and not limi- 

tation, the communication abstractions may be configured to 

support serial and parallel communication channels, such as, 

for example, USB, IEEE-1394, 802.11a/b/g, cellular tele- 

phone, and other wired and wireless communication proto- 

cols. 

2.1.3. Locomotion Abstractions 

Locomotion abstractions 216 may be based on robot 

motion, not necessarily on specific hardware components. 

For example and not limitation, motion control abstractions 

may include drive, steering, power, speed, force, odometry, 

and the like. Thus, the motion abstractions can be tailored to 

individual third party drive controls at the hardware abstrac- 

tion level and effectively abstracted away from other archi- 
tectural components. In this manner, support for motion con- 

trol of a new robot platform may comprise simply supplying 

the APIs which control the actual motors, actuators, and the 

like, into the locomotion abstraction framework. 
2.1.4. Perception Abstractions 

The perception abstractions 218 may include abstractions 

for a variety of perceptive hardware useful for robots, such as, 

for example, inertial measurements, imaging devices, sonar 

measurements, camera pan!tilt abstractions, GPS and iGPS 

abstractions, thermal sensors, infrared sensors, tactile sen- 
sors, laser control and perception abstractions, GPR, compass 

measurements, EMI measurements, and range abstractions. 

2.2. Robot Abstraction Level 

While the hardware abstraction level 210 focuses on a 

software model for a wide variety of hardware that may be 

10 
useful on robots, the robot abstraction level 230 (as illustrated 
in FIGS. 3 and 5) focuses on generic robot attributes. The 

generic robot attributes enable building blocks for defining 

robot behaviors at the robot behavior level and provide a 

5 membrane for separating the definition of robot behaviors 

from the low-level hardware abstractions. Thus, each robot 
attribute may utilize one or more hardware abstractions to 

define its attribute. These robot attributes may be thought of 
as actionable abstractions. In other words, a given actionable 

10 abstraction may fuse multiple hardware abstractions that pro- 

vide similar information into a data set for a specific robot 

attribute. For example and not limitation, the generic robot 

attribute of "range" may fuse range data from hardware 

abstractions of an IR sensor and a laser sensor to present a 

15 single coherent structure for the range attribute. In this way, 

the GRA presents robot attributes as building blocks of inter- 

est for creating robot behaviors such that, the robot behavior 

can use the attribute to develop a resulting behavior (e.g., 

stop, slow down, turn right, turn left, etc). 

20 Furthermore, a robot attribute may combine information 

from dissimilar hardware abstractions. By way of example 

and not limitation, the position attributes may fuse informa- 

tion from a wide array of hardware abstractions, such as: 

perception modules like video, compass, GPS, laser, and 
25 sonar; along with control modules like drive, speed, and 

odometry. Similarly, a motion attribute may include informa- 

tion from position, inertia, range, and obstruction abstrac- 

tions. 

This abstraction of robot attributes frees the developer 
30 from dealing with individual hardware elements. In addition, 

each robot attribute can adapt to the amount, and type of 

information it incorporates into the abstraction based on what 

hardware abstractions may be available on the robot platform. 

The robot attributes, as illustrated in FIG. 5, are defined at 
35 a relatively low level of atomic elements that include 

attributes of interest for a robot’s perception, status, and con- 

trol. Some of these robot attributes include; robot health 232, 
robot position 234, robot motion 236, robot bounding shape 

238, environmental occupancy grid 240, and range 242. It 
40 will be readily apparent to those of ordinary skill in the art that 

the modules shown in FIG. 5 are a representative, rather than 

comprehensive, example of robot attributes. Note that the 

term "robot attributes" is used somewhat loosely, given that 

robot attributes may include physical attributes such as robot 
45 health abstractions 232 and bounding shape 238 as well as 

how the robot perceives its environment, such as the environ- 

mental occupancy grid 240 and range attributes 242. 

2.2.1. Robot Health 

The robot health abstractions 232 may include, for 
50 

example, general object models for determining the status 

and presence of various sensors and hardware modules, deter- 

mining the status and presence of various communication 

modules, determining the status of on-board computer com- 

55 ponents. 
2.2.2. Robot Bounding Shape 

The robot bounding shape 238 abstractions may include, 

for example, definitions of the physical size and boundaries of 

the robot and definitions of various thresholds for movement 

60 that define a safety zone or event horizon, as is explained more 

fully below. 

2.2.3. Robot Motion 

The robot motion abstractions 236 may include abstrac- 

tions for defining robot motion and orientation attributes such 

65 as, for example, obstructed motion, velocity, linear and angu- 

lar accelerations, forces, and bump into obstacle, and orien- 

tation attributes such as roll, yaw and pitch. 
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2.2.4. Range 

The range abstractions 242 may include, for example, 
determination of range to obstacles from lasers, sonar, infra- 
red, and fused combinations thereof. 

In more detail, FIG. 6 illustrates a representative embodi- 
ment of how a range abstraction may be organized. A variety 
of coordinate systems may be in use by the robot and an 
operator. By way of example, a local coordinate system may 
be defined by an operator relative to a space of interest (e.g., 
a building) or a world coordinate system defined by sensors 
such as a GPS unit, an iGPS unit, a compass, an altimeter, and 
the like. A robot coordinate system may be defined in Carte- 
sian coordinates relative to the robot’s orientation such that, 
for example, the X-axis is to the right, the Y-axis is straight 
ahead, and the Z-axis is up. Another robot coordinate system 
may be cylindrical coordinates with a range, angle, and height 
relative to the robot’s current orientation. 

The range measurements for the representative embodi- 
ment illustrated in FIG. 6 are organized in a cylindrical coor- 
dinate system relative to the robot. The angles may be parti- 
tioned into regions covering the front, left, right and back of 
the robot and given names such as, for example, those used in 
FIG. 6. 

Thus, regions in front may be defined and named as: 

Right_In_Front (310 and 310’), representing an angle 
between -15° and 15°; 

Front 312, representing an angle between -45° and 45°; 
and 

Min_Front_Dist 314, representing an angle between -90° 
and 90°. 

Similarly, regions to the left side may be defined as: 

Left_Side 321, representing an angle between 100° and 
80°; 

Left_Front 322, representing an angle between 60° and 
30°; 

Front Left Side 324, representing an angle between 70° 
and 50°; and 

L_Front 326, representing an angle between 45° and 1 o. 

For the right side, regions may be defined as: 

Right_Side 330, representing an angle between -100° and 
-80°; 

Right_Front 332, representing an angle between -60° and 
-30°; 

Front_Right_Side 334, representing an angle between 
-70° and -50°; and 

R_Front 336, representing an angle between -45° and 0°. 

While not shown, those of ordinary skill in the art will 
recognize that with the exception of the Left_Side 321 and 
Right_Side 330 regions, embodiments may include regions in 
the back, which are a mirror image of those in the front 
wherein the "Front" portion of the name is replaced with 
"Rear." 

Furthermore, the range attributes define a range to the 
closest object within that range. However, the abstraction of 
regions relative to the robot, as used in the range abstraction 
may also be useful for many other robot attributes and robot 
behaviors that may require directional readings, such as, for 
example, defining robot position, robot motion, camera posi- 
tioning, an occupancy grid map, and the like. 

In practice, the range attributes may be combined to define 
a more specific direction. For example, directly forward 
motion may be defined as a geometrically adjusted combina- 
tion of Right_In_Front 310, L_Front 326, R_Front 336, 
Front_Left_Side 324, and Front_Right_Side 334. 

12 
2.2.5. Robot Position and Environmental Occupancy Grid 

Maps 
Returning to FIG. 5, the robot abstractions may include 

position attributes 234. Mobile robots may operate effectively 
5 only if they, or their operators, know where they are. Conven- 

tional robots may rely on real-time video and global position- 
ing systems (GPS) as well as existing maps and floor plans to 
determine their location. However, GPS may not be reliable 
indoors and video images may be obscured by smoke or dust, 

10 or break up because of poor communications. Maps and floor 
plans may not be current and often are not readily available, 
particularly in the chaotic aftermath of natural, accidental or 
terrorist events. Consequently, real-world conditions on the 
ground often make conventional robots that rely on a priori 

15 maps ineffective. 
Accurate positioning knowledge enables the creation of 

high-resolution maps and accurate path following, which 
may be needed for high-level deliberative behavior, such as 
systematically searching or patrolling an area. 

2o Embodiments of the present invention may utilize various 
mapping or localization techniques including positioning 
systems such as indoor GPS, outdoor GPS, differential GPS, 
theodolite systems, wheel-encoder information, and the like. 
To make robots more autonomous, embodiments of the 

25 present invention may fuse the mapping and localization 
information to build 3D maps on-the-fly that let robots under- 
stand their current position and an estimate of their surround- 
ings. Using existing information, map details may be 
enhanced as the robot moves through the environment. Ulti- 

3o mately, a complete map containing rooms, hallways, door- 
ways, obstacles and targets may be available for use by the 
robot and its human operator. These maps also may be shared 
with other robots or human first responders. 

With the on-board mapping and positioning algorithm that 
35 accepts input from a variety of range sensors, the robot may 

make substantially seamless transitions between indoor and 
outdoor operations without regard for GPS and video drop- 
outs that occur during these transitions. Furthermore, 
embodiments of the present invention provide enhanced fault 

4o tolerance because they do not require off-board computing or 
reliance on potentially inaccurate or non-existent a priori 
maps. 

Embodiments of the present invention may use localization 
methods by sampling range readings from scanning lasers 

45 and ultrasonic sensors and by reasoning probabilistically 
about where the robot is within its internal model of the world. 
The robot localization problem may be divided into two sub- 
tasks: global position estimation and local position tracking. 
Global position estimation is the ability to determine the 

5o robot’s position in an a priori or previously learned map, 
given no information other than that the robot is somewhere in 
the region represented by the map. Once a robot’s position 
has been found in the map, local tracking is the problem of 
keeping track of the robot’s position over time and move- 

55 ment. 
The robot’s state space may be enhanced by localizaton 

methods such as Monte Carlo techniques and Markovian 
probability grid approaches for position estimation, as are 
well known by those of ordinary skill in the art. Many of these 

6o techniques provide efficient and substantially accurate 
mobile robot localization. 

With a substantially accurate position for the robot deter- 
mined, local tracking can maintain the robot’s position over 
time and movement using dead-reckoning, additional global 

65 positioning estimation, or combinations thereof. Dead-reck- 
oning is a method of navigation by keeping track of how far 
you have gone in any particular direction. For example, dead- 
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reckoning would determine that a robot has moved a distance 

of about five meters at an angle from the current pose of about 

37 degrees if the robot moves four meters forward, turns 90 

degrees to the right, and moves forward three meters. Dead- 

reckoning can lead to navigation errors if the distance traveled 

in a given direction, or the angle through which a robot turns, 

is interpreted incorrectly. This can happen, for example, if one 

or more of the wheels on the robot spin in place when the 

robot encounters an obstacle. 

Therefore, dead-reckoning accuracy may be bolstered by 

sensor information from the environment, new global posi- 

tioning estimates, or combinations thereof. With some form 

of a map, the robot can use range measurements to map 

features to enhance the accuracy of a pose estimate. Further- 

more, the accuracy of a pose estimate may be enhanced by 

new range measurements (e.g., laser scans) into a map that 

may be growing in size and accuracy. In Simultaneous Local- 

ization and Mapping (SLAM), information from the robot’s 

encoders and laser sensors may be represented as a network of 

probabilistic constraints linking the successive positions 
(poses) of the robot. The encoders may relate one robot pose 

to the next via dead-reckoning. To give further constraints 

between robot poses, the laser scans may be matched with 

dead-reckoning, including constraints for when a robot 

returns to a previously visited area. 

The robot abstractions may include environmental occu- 

pancy grid attributes 240. One form of map that may be useful 

from both the robot’s perspective and an operator’s perspec- 

tive is an occupancy grid. An environmental occupancy grid, 

formed by an occupancy grid abstraction 240 (FIG. 5) is 

illustrated in FIG. 7. In forming an occupancy grid, a robot 

coordinate system may be defined in Cartesian coordinates 

relative to the robot’s orientation such that, for example, the 

X-axis is to the right, the Y-axis is straight ahead, and the 

Z-axis is up. Another robot coordinate system may be defined 

in cylindrical coordinates with a range, angle, and height 

relative to the robot’s current orientation. Furthermore, occu- 
pancy grids may be translated to other coordinate systems for 

use by an operator. 

An occupancy grid map 390 may be developed by dividing 

the environment into a discrete grid of occupancy cells 395 

and assigning a probability to each grid indicating whether 

the grid is occupied by an object. Initially, the occupancy grid 

may be set so that every occupancy cell 395 is set to an initial 
probability. As the robot scans the environment, range data 

developed from the scans may be used to update the occu- 

pancy grid. For example, based on range data, the robot may 

detect an object at a specific orientation and range away from 

the robot. This range data may be converted to a different 

coordinate system (e.g., local or world Cartesian coordi- 

nates). As a result of this detection, the robot may increase the 

probability that the particular occupancy cell 395 is occupied 

and decrease the probability that occupancy cells 395 
between the robot and the detected object are occupied. As the 

robot moves through its environment, new horizons may be 

exposed to the robot’s sensors, which enable the occupancy 

grid to be expanded and enhanced. To enhance map building 

and localization even further, multiple robots may explore an 

environment and cooperatively communicate their map infor- 

mation to each other or a robot controller to cooperatively 

build a map of the area. 

The example occupancy grid map 390 as it might be pre- 

sented to an operator is illustrated in FIG. 7. The grid of 

occupancy cells 395 can be seen as small squares on this 

occupancy grid 390. A robot path 380 is shown to illustrate 

how the robot may have moved through the environment in 

constructing the occupancy grid 390. Of course, those of 

10 

14 
ordinary skill in the art will recognize that, depending on the 
application and expected environment, the occupancy grid 

390 may be defined in any suitable coordinate system and 

may vary in resolution (i.e., size of each occupancy cell 395). 

In addition, the occupancy grid 390 may include a dynamic 

resolution such that the resolution may start out quite coarse 

while the robot discovers the environment, then evolve to a 
finer resolution as the robot becomes more familiar with its 

surroundings. 

3. Robotic Intelligence Kernel 

A robot platform 100 may include a robot intelligence 

kernel (may also be referred to herein as intelligence kernel), 

which coalesces hardware components for sensing, motion, 

15 manipulation, and actions with software components for per- 

ception, communication, behavior, and world modeling into a 

single cognitive behavior kernel that provides intrinsic intel- 

ligence for a wide variety of unmanned robot platforms. The 

intelligence kernel architecture may be configured to support 

2o multiple levels of robot autonomy that may be dynamically 
modified depending on operating conditions and operator 

wishes. 

The robot intelligence kernel (RIK) may be used for devel- 

oping a variety of intelligent robotic capabilities. By way of 

25 example and not limitation, some of these capabilities includ- 
ing visual pursuit, intruder detection and neutralization, secu- 

rity applications, urban reconnaissance, search and rescue, 

remote contamination survey, and countermine operations. 

Referring back to the software architecture diagram of 
3o FIG. 3, the RIK comprises a multi-level abstraction including 

a robot behavior level 250 and a cognitive level 270. The RIK 

may also include the robot abstraction level 230 and the 

hardware abstraction level 210 discussed above. 

Above the robot abstraction level 230, the RIK includes the 
35 robot behavior level 270,250, which defines specific complex 

behaviors that a robot, or a robot operator, may want to 

accomplish. Each complex robot behavior may utilize a vari- 

ety of robot attributes, and in some cases a variety of hardware 

abstractions, to perform the specific robot behavior. 
4o 

Above the robot behavior level 250, the RIK includes the 
cognitive level 270, which provides cognitive conduct mod- 

ules to blend and orchestrate the asynchronous events from 

the complex robot behaviors and generic robot behaviors into 

combinations of functions exhibiting cognitive behaviors, 
45 wherein high level decision making may be performed by the 

robot, the operator, or combinations of the robot and the 

operator. 

Some embodiments of the RIK may include, at the lowest 

50 
level, the hardware abstraction level 210, which provides for 

portable, object oriented access to low-level hardware per- 

ception and control modules that may be present on a robot. 

These hardware abstractions have been discussed above in 

the discussion of the GRA. 

55 Some embodiments of the RIK may include, above the 
hardware abstraction level 210, the robot abstraction level 
230 including generic robot abstractions, which provide 

atomic elements (i.e., building blocks) of generic robot 

attributes and develop a membrane between the low-level 

6o hardware abstractions and control based on generic robot 
functions. Each generic robot abstraction may utilize a vari- 

ety of hardware abstractions to accomplish its individual 

function. These generic robot abstractions have been dis- 

cussed above in the discussion of the GRA. 

65 3.1. Robot Behaviors 

While the robot abstraction level 230 focuses on generic 

robot attributes, higher levels of the RIK may focus on; rela- 
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tively complex robot behaviors at the robot behavior level 

250, or on robot intelligence and operator collaboration at the 

cognitive level 270. 

The robot behavior level 250 includes generic robot classes 

comprising functionality common to supporting behavior 

across most robot types. For example, the robot behavior level 

includes utility functions (e.g., Calculate angle to goal) and 

data structures that apply across substantially all robot types 

(e.g., waypoint lists). At the same time, the robot behavior 

level defines the abstractions to be free from implementation 

specifics such that the robot behaviors are substantially 

generic to all robots. 

The robot behavior level 250, as illustrated in FIG. 8, may 

be loosely separated into reactive behaviors 252 and delib- 

erative behaviors 254. Of course, it will be readily apparent to 

those of ordinary skill in the art that the modules shown in 

FIG. 8 are a representative, rather than comprehensive, 

example of robot behaviors. 

The reactive behaviors 252 may be characterized as behav- 

iors wherein the robot reacts to its perception of the environ- 

ment based on robot attributes, hardware abstractions, or 
combinations thereof. Some of these reactive behaviors may 

include autonomous navigation, obstacle avoidance, guarded 

motion, visual tracking, laser tracking, get-unstuck behavior, 

and reactive planning. As examples, and not limitations, 
details regarding some of these behaviors are discussed in the 

section below regarding application specific behaviors. 

In contrast, deliberative behaviors 254 may be character- 

ized as behaviors wherein the robot may need to make deci- 

sions on how to proceed based on the results of the reactive 

behaviors, information from the robot attributes and hard- 

ware abstractions, or combinations thereof. Some of these 
deliberative behaviors may include waypoint navigation with 

automatic speed adjustment, global path planning, and occu- 
pancy change detection. As examples, and not limitations, 

details regarding some of these behaviors are discussed in the 

section below regarding application specific behaviors. 

3.2. Cognitive Conduct 

The cognitive conduct level 270, as illustrated in FIG. 9, 

represents the highest level of abstraction, wherein significant 

robot intelligence may be built in to cognitive conduct mod- 
ules, as well as significant operator-robot collaboration to 

perform complex tasks requiring enhanced robot initiative 

299. Cognitive conduct modules blend and orchestrate asyn- 
chronous firings from the reactive behaviors 252, deliberative 

behaviors 254, and robot attributes 230 into intelligent robot 

conduct. Cognitive conduct modules may include conduct 

such as GoTo 272, wherein the operator may simply give a 

coordinate for the robot to go to and the robot takes the 

initiative to plan a path and get to the specified location. This 

GoTo conduct 272 may include a combination of robot 

behaviors 250, robot attributes 230, and hardware abstrac- 
tions 210, such as, for example, obstacle avoidance, get- 

unstuck, reactive path planning, deliberative path planning, 

and waypoint navigation. 
Another representative cognitive conduct module is human 

detection and pursuit 274, wherein the robot may react to 

changes in the environment and pursue those changes. This 

detection and pursuit conduct 274 may also include pursuit of 

other objects, such as, for example, another robot. The detec- 

tion and pursuit 274 conduct may include a combination of 

robot behaviors 250, robot attributes 230, and hardware 
abstractions 210, such as, for example, occupancy change 

detection, laser tracking, visual tracking, deliberative path 

planning, reactive path planning, and obstacle avoidance. 

Other representative cognitive conduct modules include 

conduct such as exploration and reconnaissance conduct 276, 
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combined with map building, leader/follower conduct 278, 

and search and identify conduct 280. 

Of course, it will be readily apparent to those of ordinary 

skill in the art that the cognitive conduct modules shown in 

5 FIG. 9 are a representative, rather than comprehensive 

example of robot conduct that may be implemented using 

embodiments of the present invention. 

3.3. Timing and Behavior Adaptation 

A notable aspect of the RIK is that the cognitive conduct 

10 modules 270 and robot behaviors 250 generally operate from 

a perception of speed of motion in relationship to objects and 

obstacles. In other words, rather than being concerned with 

spatial horizons and the distance away from an object, the 

cognitive conduct 270 and robot behaviors 250 are largely 

15 concerned with temporal horizons and how soon the robot 

may encounter an object. This enables defining the cognitive 

conduct 270 and robot behaviors 250 in a relativistic sense 

wherein, for example, the modules interpret motion as an 

event horizon wherein the robot may only be concerned with 

2o obstacles inside the event horizon. For example, a robot 

behavior 250 is not necessarily concerned with an object that 

is 10 meters away. Rather, the robot behavior 250 may be 

concerned that it may reach the object in two seconds. Thus, 

the object may be within the event horizon when the object is 

25 10 meters away and the robot is moving toward it at 5 meters/ 

second, whereas if the object is 10 meters away and the robot 

is moving at 2 meters/second, the object may not be within the 

event horizon. 

This relativistic perception enables an adaptation to pro- 

3o cessing power and current task load. If the robot is very busy, 

for example, processing video, it may need to reduce its 

frequency of processing each task. In other words, the amount 

of time to loop through all the cognitive conduct 270 and 

robot behaviors 250 may increase. However, with the RIK, 

35 the cognitive conduct 270 and robot behaviors 250 can adapt 

to this difference in frequency by modifying its robot behav- 

iors 250. For example, if the time through a loop reduces from 

200 Hz to 100 Hz, the robot behaviors 250 and cognitive 

conduct 270 will know about this change in loop frequency 

40 and may modify the way it makes a speed adjustment to avoid 

an object. For example, the robot may need a larger change in 

its speed of motion to account for the fact that the next 

opportunity to adjust the speed is twice more distant in the 

future at 100 Hz than it would be at 200 Hz. This becomes 

45 more apparent in the discussion below, regarding the guarded 

motion behavior. 

To enable and control this temporal awareness, the RIK 

includes a global timing loop in which cognitive conduct 270 

and robot behaviors 250 may operate. Using this global tim- 

50 ing loop, each module can be made aware of information such 

as, for example, average time through a loop minimum and 

maximum time through a loop, and expected delay for next 

timing tick. 

With this temporal awareness, the robot tends to modify its 

55 behavior by adjusting its motion, and motion of its manipu- 

lators, relative to its surroundings rather than adjusting its 

position relative to a distance to an object. Of course, with the 

wide array ofperceptors, the robot is still very much aware of 

its pose and position relative to its environment and can 

60 modify its behavior based on this positional awareness. How- 

ever, with the RIK, the temporal awareness is generally more 

influential on the cognitive conduct modules and robot behav- 

iors than the positional awareness. 

3.4. Dynamic Autonomy 

65 To enhance the operator/robot tradeoffofcontrol, the intel- 

ligence kernel provides a dynamic autonomy structure, which 

is a decomposition of antonomy levels, allowing methods for 
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shared control to permeate all levels of the multi-level 

abstraction. Furthermore, the intelligence kernel creates an 

object-oriented software architecture, which may require 

little or no source code changes when ported to other plat- 

forms and low-level proprietary controllers. 
The dynamic autonomy structure of the RIK provides a 

multi-level harmonization between human intervention and 

robot initiative 299 across robot behaviors. As capabilities 

and limitations change for both the human and the robot due 

to workload, operator expertise, communication dropout, and 

other factors, the RIK architecture enables shifts from one 
level of autonomy to another. Consequently, the ability of the 

robot to protect itself, make decisions, and accomplish tasks 

without human assistance may enable increased operator effi- 
ciency. 

FIGS. 10A and 10B are depictions of a representative 

embodiment of a dynamic autonomy structure illustrating 

different levels of interaction between operator intervention 

291 and robot initiative 299. As referred to herein operator, or 

operator intervention 291, may include human operation via 

a remote computer in communication with the robot, remote 

operation by some other form of artificial intelligence oper- 

ating on a remote computer in communication with the robot, 

or some combination thereof. 

At the lowest level, referred to as teleoperation mode 293, 

the robot may operate completely under remote control and 

take no initiative to perform operations on its own. At the 

second level, referred to as safe mode 294, robot movement is 
dependent on manual control from a remote operator. How- 

ever, in safe mode 294, the robot may be equipped with a level 

of initiative that prevents the operator from causing the robot 

to collide with obstacles. At the third level, referred to as 
shared mode 295, the robot can relieve the operator from the 

burden of direct control. For example, the robot may use 

reactive navigation to find a path based on the robot’ s percep- 

tion of the environment. Shared mode 295 provides for a 

balanced allocation of roles and responsibilities. The robot 

accepts varying levels of operator intervention 291 and may 

support dialogue through the use of scripted suggestions (e.g., 
"Path blocked! Continue left or right?") and other text mes- 

sages that may appear within a graphical interface. At the 
fourth level, referred to as collaborative tasking mode 296, a 

high level of collaborative tasking may be developed between 

the operator and the robot using a series of high-level tasks 

such as patrol, search region or follow path. In collaborative 

tasking mode 296, operator intervention 291 occurs on the 

tasking level, while the robot manages most decision-making 

and navigation. At the highest level, referred to as autono- 

mous mode 297, a robot may behave in a substantially 

autonomous manner, needing nothing more than being 

enabled by an operator and perhaps given a very high level 

command such as, for example, survey the area, or search for 

humans. 

FIG. 10A illustrates a representative embodiment of how 

tasks may be allocated between the operator and the robot. 

For example, teleoperation mode 293 may be configured such 

that the operator defines tasks, supervises direction, motivates 

motion, and prevents collision, in such a way that the robot 

takes no initiative and the operator maintains control. In safe 

mode 294, the operator may still define tasks, supervise direc- 

tion, and motivate motion, while allowing the robot to take the 

initiative to prevent collisions. In shared mode 295, the opera- 

tor may still define tasks and supervise direction, while allow- 

ing the robot to motivate motion and prevent collisions. In 

collaborative tasking mode 296, the robot may possess the 

initiative to prevent collisions, motivate motion, and super- 

vise direction, while relinquishing operator intervention 291 
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to define task goals. In autonomous mode 297, the robot’s 

initiative may prevent collisions, motivate motion, supervise 

direction, and define task goals. Of course, those of ordinary 

skill in the art will recognize that this allocation of tasks 

5 between the operator and the robot is a representative alloca- 

tion. Many other tasks and behaviors, and allocation of those 

tasks and behaviors, are contemplated within the scope of the 

present invention. 

FIG. 10B illustrates various cognitive conduct, robot 

10 behaviors, robot attributes, and hardware abstractions that 

may be available at different levels of robot dynamic 
autonomy 290. In general, moving from the teleoperation 

mode 293 toward the autonomous mode 297 represents an 

increase in the amount of robot initiative 299 and a decrease 

15 in the amount of operator intervention 291. Conversely, mov- 

ing from the autonomous mode 297 toward the teleoperation 

mode 293 represents a decrease in the amount of robot ini- 

tiative 299 and an increase in the amount of operator inter- 

vention 291. Of course, those of ordinary skill in the art will 

2o recognize that FIG. 10B is a representative sample of avail- 

able conduct, behaviors, attributes, and hardware, as well as a 
representative allocation between autonomy levels. The RIK 

is configured such that many modules may operate across 
different levels of autonomy by modifying the amount of 

25 operator intervention 291, modifying the amount of robot 

initiative 299, or combinations thereof. 
The autonomy levels are structured in the robot intelli- 

gence kernel such that each new level of autonomy is built on, 

and encompasses, the subsequent level. For example, a 

3o guarded motion mode processing (explained more fully 

below) may include the behavior and representational frame- 

work utilized by the teleoperation mode 293 processing, but 

also include additional levels of robot initiative 299 based on 

the various robot attributes (e.g., related to directional 

35 motion) created in response to the teleoperation mode 293. 

Shared mode 295 may include all of the functionality and 

direct control of safe mode 294, but also allows robot initia- 
tive 299 in response to the abstractions produced through the 

guarded motion mode processing (e.g., fused range abstrac- 

4o tions created in response to the direction motion abstrac- 

tions). In addition, the collaborative tasking mode 296 may 

initiate robot responses to the abstractions created in shared 

mode 295 processing such as recognition that a box canyon 

has been entered or that a communication link has been lost. 
45 For a robotic system to gracefully accept a full spectrum of 

intervention possibilities, interaction issues cannot be 

handled merely as augmentations to a control system. There- 

fore, opportunities for operator intervention 291 and robot 

initiative 299 are incorporated as an integral part of the 

5o robot’s intrinsic intelligence. Moreover, for autonomous 

capabilities to evolve, the RIK is configured such that a robot 
is able to recognize when help is needed from an operator, 

other robot, or combinations thereof and learn from these 
interactions. 

55 As an example, in one representative embodiment, the 

robot includes a Sony CCD camera that can pan, tilt and zoom 

to provide visual feedback to the operator in the teleoperation 

mode 293. The robot may also use this camera with increased 

robot initiative 299 to characterize the environment and even 

6o conduct object tracking. 

In this embodiment, the RIK provides a graduated process 

for the robot to protect itself and the environment. To do so, 

the RIK may fuse a variety of range sensor information. A 

laser range finder may be mounted on the front, and sonar 

65 perceptors may be located around the mid-section of the 

robot. The robot also may include highly sensitive bump 

strips around its perimeter that register whether anything has 
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been touched. To protect the top of the robot, especially the 
cameras and mission-specific sensors placed on top of the 

robot, infrared proximity sensors may be included to indicate 

when an object is less than a few inches from the robot. 

Additional infrared proximity sensors may be placed on the 

bottom of the robot and point ahead of the robot toward the 

ground in order to prevent the robot from traveling into an 

open space (e.g., traveling offofa landing down a stairway). 
Together, these sensors provide a substantial field of protec- 

tion around the robot and allow the operator to command the 

robot with increased confidence so that the robot can take 
initiative to protect itself or its environment. 

However, avoiding obstacles may be insufficient. Many 

adverse environments may include forms of uneven terrain, 

such as rabble. The robot should be able to recognize and 

respond to these obstacles. Inertial sensors may be used to 

provide acceleration data in three dimensions. This inertial 

information may be fused with information from the wheel 

encoders giving velocity and acceleration of the wheels, and 

an electrical current may be drawn from the batteries, to 

produce a measure of "unexpected" resistance that may be 

encountered by the robot. As part of the dynamic autonomy, 

the operator may be able to choose to set a resistance limit that 

will automatically stop the robot once the specified threshold 

has been exceeded. The resistance limit may be useful not 

only for rough terrain, but also in situations when the operator 

needs to override the "safe motion" capabilities (based on the 

obstacle avoidance sensors) to do things like push chairs and 

boxes out of the way and push doors open. 

In addition, the RIK enables operators to collaborate with 

mobile robots, by defining an appropriate level of discourse, 

including a shared vocabulary and a shared cognitive work 

space collaboratively constructed and updated on-the-fly 

through interaction with the real world. This cognitive work 

space could consist of terrain overlaid with semantic abstrac- 

tions generated through autonomous recognition of environ- 

mental features with point-and-click operator validation and 

iconographic insertion of map entities. Real-time semantic 

maps constructed collaboratively by humans, ground robots 

and air vehicles could serve as the basis for a spectrum of 
mutual human-robot interactions including tasking, situation 

awareness, human-assisted perception and collaborative 

environmental "understanding." Thus, the RIK enables 

human-robot communication within the context of a mission 

based on shared semantic maps between the robotic system 

and the operator. 

With reference to FIGS. 10A and 10B, additional details of 
the dynamic autonomy structure 290 and corresponding 

operation modes can be discussed. 

3.4.1. Teleoperation Mode 

In teleoperation mode 293, the operator has full, continu- 

ous control of the robot at a low level. The robot takes little or 

no initiative except, for example, to stop after a specified time 

if it recognizes that communications have failed. Because the 

robot takes little or no initiative in this mode, the dynamic 

autonomy implementation provides appropriate situation 

awareness to the operator using perceptual data fused from 

many different sensors. For example, a tilt sensor may pro- 

vide data on whether the robot is in danger of overturning. 

Inertial effects and abnormal torque on the wheels (i.e., forces 

not associated with acceleration) are fused to produce a mea- 

sure of resistance as when, for example, the robot is climbing 

over or pushing against an obstacle. Even in teleoperation 

mode 293, the operator may be able to choose to activate a 

resistance limit that permits the robot to respond to high 

resistance and bump sensors. Also, a specialized interface 

2O 
may provide the operator with abstracted auditory, graphical 

and textual representations of the environment and task. 

Some representative behaviors and attributes that may be 

defined for teleoperation mode 293 include joystick opera- 

5 tion, perceptor status, power assessment, and system status. 

3.4.2. Safe Mode 

In safe mode 294, the operator directs movements of the 

robot, but the robot takes initiative to protect itself. In doing 

so, this mode frees the operator to issue motion commands 

10 with less regard to protecting the robot, greatly accelerating 

the speed and confidence with which the operator can accom- 

plish remote tasks. The robot may assess its own status and 

surrounding environment to decide whether commands are 

safe. For example, the robot possesses a substantial self- 

15 awareness of its position and will attempt to stop its motion 

before a collision, placing minimal limits on the operator. In 

addition, the robot may be configured to notify the operator of 

environmental features (e.g., box canyon, comer, and hall- 

way), immediate obstacles, tilt, resistance, etc., and also con- 

2o tinuously assesses the validity of its diverse sensor readings 

and communication capabilities. In safe mode 294, the robot 

may be configured to refuse to undertake a task if it does not 

have the ability (i.e., sufficient power or perceptual resources) 

to safely accomplish it. 

25 Some representative behaviors and attributes that may be 

defined for safe mode 294 include guarded motion, resistance 

limits, and bump sensing. 

3.4.3. Shared Mode 

In shared mode 295, the robot may take the initiative to 

3o choose its own path, responds autonomously to the environ- 

ment, and work to accomplish local objectives. This initiative 

is primarily reactive rather than deliberative. In terms of navi- 

gation, shared mode 295 may be configured such that the 

robot responds only to its local (e.g., a two second event 

35 horizon or a six meter radius), sensed environment. Although 

the robot may handle the low-level navigation and obstacle 

avoidance, the operator may supply intermittent input, often 

at the robot’ s request, to guide the robot in general directions. 

For example, a "Get Unstuck" behavior enables the robot to 

4o autonomously extricate itself from highly cluttered areas that 

may be difficult for a remote operator to handle. 

Some representative behaviors and attributes that may be 

defined for shared mode 295 include reactive planning, get 

unstuck behavior, and obstacle avoidance. 
45 3.4.4. Collaborative Tasking Mode 

In collaborative tasking mode 296, the robot may perform 

tasks such as, for example, global path planning to select its 

own route, requiring no operator input except high-level task- 
ing such as "follow that target" or "search this area" (perhaps 

5o specified by drawing a circle around a given area on the map 

created by the robot). For all these levels, the intelligence 

resides on the robot itself, such that off-board processing is 

unnecessary. To permit deployment within shielded struc- 

tures, a customized communication protocol enables very 

55 low bandwidth communications to pass over a serial radio 
link only when needed. The system may use multiple and 

separate communications channels with the ability to reroute 

data when one or more connection is lost. 

Some representative cognitive conduct and robot behav- 

6o iors, and robot attributes that may be defined for collaborative 

tasking mode 296 include waypoint navigation, global path 

planning, go to behavior, retro-traverse behavior, area search 

behavior, and environment patrol. 

3.4.5. Autonomous Mode 

65 In autonomous mode 297, the robot may perform with 

minimal to no operator intervention 291. For behaviors in 

autonomous mode 297, the operator may simply give a corn- 
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mand for the robot to perform. Other than reporting status to 

the operator, the robot may be free to plan paths, prioritize 

tasks, and carry out the command using deliberative behav- 

iors defined by the robot’s initiative. 

Some representative behaviors and attributes that may be 

defined for autonomous mode 297 include pursuit behaviors, 

perimeter surveillance, urban reconnaissance, human pres- 

ence detection, geological surveys, radiation surveys, virtual 
rail behavior, countermine operations, and seeking impro- 

vised explosive devices. 

3.5. RIK Examples and Communication 

Conventionally, robots have been designed as extensions 

of human mobility and senses. Most seek to keep the human 
in substantially complete control, allowing the operator, 

through input from video cameras and other on-board sen- 

sors, to guide the robot and view remote locations. In this 

conventional "master-slave" relationship, the operator pro- 

vides the intelligence and the robot is a mere mobile platform 

to extend the operator’ s senses. The object is for the operator, 

perched as it were on the robot’s back, to complete some 

desired tasks. As a result, conventional robot architectures 
may be limited by the need to maintain continuous, high- 

bandwidth communications links with their operators to sup- 

ply clear, real-time video images and receive instructions. 

Operators may find it difficult to visually navigate when con- 

ditions are smoky, dusty, poorly lit, completely dark or full of 

obstacles and when communications are lost because of dis- 
tance or obstructions. 

The Robot Intelligence Kernel enables a modification to 

the way humans and robots interact, from a master-slave 

relationship to a collaborative relationship in which the robot 

can assume varying degrees of autonomy. As the robot initia- 
tive 299 increases, the operator can turn his or her attention to 

the crucial tasks at hand (e.g., locating victims, hazards, dan- 

gerous materials; following suspects; measuring radiation 

and/or contaminant levels) without worrying about moment- 

to-moment navigation decisions or communications gaps. 

The RIK places the intelligence required for high levels of 

autonomy within the robot. Unlike conventional designs, off- 

board processing is not necessary. Furthermore, the RIK 

includes low bandwidth communication protocols and can 

adapt to changing connectivity and bandwidth capabilities. 

By reducing or eliminating the need for high-bandwidth 

video feeds, the robot’s real-world sensor information can be 
sent as compact data packets over low-bandwidth (<1 Kbs) 

communication links such as, for example, cell phone 
modems and long-range radio. The robot controller may then 

use these low bandwidth data packets to create a comprehen- 

sive graphical interface, similar to a computer game display, 

for monitoring and controlling the robot. Due to the low 

bandwidth needs enabled by the dynamic autonomy structure 

of the RIK, it may be possible to maintain communications 

between the robot and the operator over many miles and 

through thick concrete, canopy, and even the ground itself. 

FIG. 11 illustrates a representative embodiment of the RIK 

processing of robot abstractions 300 and communications 

operations 350 for communicating information about cogni- 

tive conduct, robot behaviors, robot attributes, and hardware 
abstractions to the robot controller or other robots. The upper 

portion 300 of FIG. 11 illustrates the robot abstractions, and 

hardware abstractions that may be fused to develop robot 

attributes. In the embodiment of FIG. 11, a differential GPS 

302, a GPS 304, wheel encoders 306 and inertial data 313 
comprise hardware abstractions that may be processed by a 

Kalman filter 320. The robot attributes for mapping and local- 

ization 308 and localized pose 311 may be developed by 

including information from, among other things, the wheel 
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encoders 306 and inertial data 313. Furthermore, the local- 
ized pose 311 may be a function of the results from mapping 

and localization 308. As with the hardware abstractions, these 
robot attributes of mapping and localization 308 and local- 

5 ized pose 311 may be processed by a Kalman filter 320. 

Kalman filters 320 are efficient recursive filters that can 

estimate the state of a dynamic system from a series of incom- 

plete and noisy measurements. By way of example and not 

limitation, many of the perceptors used in the RIK include an 

10 emitter/sensor combination, such as, for example, an acoustic 

emitter and a microphone array as a sensor. These perceptors 

may exhibit different measurement characteristics depending 

on the relative pose of the emitter and target and how they 

interact with the environment. In addition, to one degree or 

15 another, the sensors may include noise characteristics relative 

to the measured values. In robotic applications, Kalman filters 

320 may be used in many applications for improving the 

information available from perceptors. As one example of 

many applications, when tracking a target, information about 

20 the location, speed, and acceleration ofthe target may include 

significant corruption due to noise at any given instant of 

time. However, in dynamic systems that include movement, a 

Kalman filter 320 may exploit the dynamics of the target, 

which govern its time progression, to remove the effects of the 

25 noise and get a substantially accurate estimate of the target’s 

dynamics. Thus, a Kalman filter 320 can use filtering to assist 

in estimating the target’s location at the present time, as well 

as prediction to estimate a target’s location at a future time. 

As a result of the Kalman filtering, or after being processed 

30 by the Kalman filter 320, information from the hardware 

abstractions and robot attributes may be combined to develop 

other robot attributes. As examples, the robot attributes illus- 

trated in FIG. 11 include position 333, movement 335, 

obstruction 337, occupancy 338, and other abstractions 340. 

35 With the robot attributes developed, information from 

these robot attributes may be available for other modules 

within the RIK at the cognitive level 270, the robot behavior 

level 250, and the robot abstraction level 230. 
In addition, information from these robot attributes may be 

40 processed by the RIK and communicated to the robot con- 

troller or other robots, as illustrated by the lower portion of 

FIG. 11. Processing information from the robot conduct, 

behavior, and attributes, as well as information from hard- 
ware abstractions serves to reduce the required bandwidth 

45 and latency such that the proper information may be commu- 

nicated quickly and concisely. Processing steps performed by 

the RIK may include a significance filter 352, a timing mod- 

ule 354, prioritization 356, and bandwidth control 358. 
The significance filter 352 may be used as a temporal filter 

50 to compare a time varying data stream from a given RIK 

module. By comparing current data to previous data, the 

current data may not need to be sent at all or may be com- 

pressed using conventional data compression techniques 
such as, for example, run length encoding and Huffman 

55 encoding. Another example would be imaging data, which 

may use data compression algorithms such as Joint Photo- 

graphic Experts Group (JPEG) compression and Moving Pic- 

ture Experts Group (MPEG) compression to significantly 

reduce the needed bandwidth to communicate the informa- 

60 tion. 

The timing module 354 may be used to monitor informa- 

tion from each RIK module to optimize the periodicity at 

which it may be needed. Some information may require peri- 

odic updates at a faster rate than others. In other words, timing 

65 modulation may be used to customize the periodicity oftrans- 

missions of different types of information based on how 

important it may be to receive high frequency updates for that 
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information. For example, it may be more important to notify 

an operator, or other robot, of the robot’s position more often 

than it would be to update the occupancy grid map 390 (FIG. 

7). 
The prioritization 356 operation may be used to determine 

which information to send ahead of other information based 

on how important it may be to minimize latency from when 

data is available to when it is received by an operator or 

another robot. For example, it may be more important to 

reduce latency on control commands and control queries 

relative to map data. As another example, in some cognitive 
conduct modules where there may be significant collabora- 

tion between the robot and an operator, or in teleoperation 

mode where the operator is in control, it may be important to 

minimize the latency of video information so that the operator 

does not perceive a significant time delay between what the 

robot is perceiving and when it is presented to the operator. 

These examples illustrate that for prioritization 356, as 
well as the significance filter 352, the timing modulation 354, 

and the bandwidth control 358, communication may be task 

dependent and autonomy mode dependent. As a result, infor- 

mation that may be a high priority in one autonomy mode may 

receive a lower priority in another autonomy mode. 

The bandwidth control operation may be used to limit 

bandwidth based on the communication channel’s bandwidth 
and how much of that bandwidth may be allocated to the 

robot. An example here might include progressive JPEG 
wherein a less detailed (i.e., coarser) version of an image may 

be transmitted if limited bandwidth is available. For video, an 
example may be to transmit at a lower frame rate. 

After the communication processing is complete, the 

resultant information may be communicated to, or from, the 

robot controller, or another robot. For example, the informa- 

tion may be sent from the robot’ s communication device 155, 

across the communication link 160, to a communication 

device 185 on a robot controller, which includes a multi-robot 
interface 190. 

FIGS. 12 and 13 illustrate a more general interaction 

between hardware abstractions, robot abstractions, environ- 

ment abstractions, robot behaviors, and robot conduct. FIG. 
12 illustrates a diagram 200 of general communication 

between the hardware abstractions associated with sensor 

data servers 211 (also referred to as hardware abstractions), 

the robot abstractions 230 (also referred to as robot 
attributes), and environment abstractions 239. Those of ordi- 
nary skill in the art will recognize that FIG. 12 is intended to 

show general interactions between abstractions in a represen- 

tative embodiment and is not intended to show every interac- 
tion possible within the GRA and RIK. Furthermore, it is not 

necessary to discuss every line between every module. Some 

example interactions are discussed to show general issues 

involved and describe some items from FIG. 12 that may not 

be readily apparent from simply examining the drawing. Gen- 

erally, the robot abstractions 230 may receive and fuse infor- 

mation from a variety of sensor data servers 211. For 

example, in forming a general abstraction about the robot’s 

current movement attributes, the movement abstraction may 

include information from bump sensors, GPS sensors, wheel 

encoders, compass sensors, gyroscopic sensors, tilt sensors, 

and the current brake state. 

Some robot attributes 230, such as the mapping and local- 

ization attribute 231 may use information from a variety of 

hardware abstractions 210, as well as other robot attributes 
230. The mapping and localization attribute 231 may use 

sonar and laser information from hardware abstractions 210 

together with position information and local position infor- 

mation to assist in defining maps of the environment, and the 
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position of the robot on those maps. Line 360 is bold to 

indicate that the mapping and localization attribute 231 may 

be used by any or all of the environment abstractions 239. For 

example, the occupancy grid abstraction uses information 

5 from the mapping and localization attribute 231 to build an 

occupancy grid as is explained, among other places, above 

with respect to FIG. 7. Additionally, the robot map position 

attribute may use the mapping and localization attribute 231 

and the occupancy grid attribute to determine the robot’s 

10 current position within the occupancy grid. 

Bold line 362 indicates that any or all of the robot abstrac- 

tions 230 and environment abstractions 239 may be used at 

higher levels of the RIK such as the communications layer 

350, explained above with respect to FIG. 11, and the behav- 
15 ior modulation 260, explained below with respect to FIG. 13. 

FIG. 13 illustrates general communication between the 

robot abstractions 230 and environment abstractions 239 with 

higher level robot behaviors and cognitive conduct. As with 

FIG. 12, those of ordinary skill in the art will recognize that 
2o FIG. 13 is intended to show general interactions between 

abstractions, behaviors, and conduct in a representative 

embodiment and is not intended to show every interaction 

possible within the GRA and RIK. Furthermore, it is not 

necessary to discuss every line between every module. Some 
25 example interactions are discussed to show general issues 

involved and describe some items from FIG. 13 that may not 

be readily apparent from simply examining the drawing. 

As an example, the event horizon attribute 363 may utilize 

and fuse information from robot abstraction level 230 such as 
3o range and movement. Information from the event horizon 

attribute 363 may be used by behaviors, such as, for example, 

the guarded motion behavior 500 and the obstacle avoidance 

behavior 600. Bold line 370 illustrates that the guarded 
motion behavior 500 and the obstacle avoidance behavior 600 

35 may be used by a variety of other robot behaviors and cogni- 

tive conduct, such as, for example, follow/pursuit conduct, 

virtual rail conduct, countermine conduct, area search behav- 
ior, and remote survey conduct. 

40 4. Representative Behaviors and Conduct 
The descriptions in this section illustrate representative 

embodiments of robot behaviors and cognitive conduct that 
may be included in embodiments of the present invention. Of 
course, those of ordinary skill in the art will recognize these 

45 robot behaviors and cognitive conduct are illustrative 
embodiments and are not intended to be a complete list or 
complete description of the robot behaviors and cognitive 
conduct that may be implemented in embodiments of the 
present invention. 

50 In general, in the flow diagrams illustrated herein, T indi- 
cates an angular velocity of either the robot or a manipulator 
and V indicates a linear velocity. Also, generally, T and V are 
indicated as a percentage of a predetermined maximum. Thus 
V 20% indicates 20% of the presently specified maximum 

55 velocity (which may be modified depending on the situation) 
of the robot or manipulator. Similarly, T 20% indicates 20% 
of the presently specified maximum angular velocity of the 
robot or manipulator. It will be understood that the presently 
specified maximums may be modified over time depending 

6o on the situations encountered. In addition, those of ordinary 
skill in the art will recognize that the values of linear and 
angular velocities used for the robot behaviors and cognitive 
conduct described herein are representative of a specific 
embodiment. While this specific embodiment may be useful 

65 in a wide variety of robot platform configurations, other linear 
and angular velocities are contemplated within the scope of 
the present invention. 
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Furthermore, those of ordinary skill in the art will recog- 

nize that the use of velocities, rather than absolute directions, 
is enabled largely by the temporal awareness of the robot 

behaviors and cognitive conduct in combination with the 
global timing loop. This gives the robot behaviors and cog- 

nitive conduct an opportunity to adjust velocities on each 
timing loop, enabling smoother accelerations and decelera- 

tions. Furthermore, the temporal awareness creates a behav- 

ior of constantly moving toward a target in a relative sense, 

rather than attempting to move toward an absolute spatial 

point. 

4.1. Autonomous Navigation 

Autonomous navigation may be a significant component 

for many mobile autonomous robot applications. Using 

autonomous navigation, a robot may effectively handle the 
task of traversing varied terrain while responding to positive 

and negative obstacles, uneven terrain, and other hazards. 

Embodiments of the present invention enable the basic intel- 

ligence necessary to allow a broad range of robotic vehicles to 

navigate effectively both indoors and outdoors. 
Many proposed autonomous navigation systems simply 

provide GPS waypoint navigation. However, GPS can be 

jammed and may be unavailable indoors or under forest 

canopy. A more autonomous navigation system includes the 

intrinsic intelligence to handle navigation even when external 

assistance (including GPS and communications) has been 

lost. Embodiments of the present invention include a por- 

table, domain-general autonomous navigation system, which 

blends the responsiveness of reactive, sensor based control 

with the cognitive approach found through waypoint follow- 

ing and path planning. Through its use of the perceptual 

abstractions within the robot attributes of the GRA, the 
autonomous navigation system can be used with a diverse 

range of available sensors (e.g., range, inertial, attitude, 

bump) and available positioning systems (e.g., GPS, laser, 

RF, etc.). 
The autonomous navigation capability may scale auto- 

matically to different operational speeds, may be configured 

easily for different perceptor suites and may be easily param- 
eterized to be portable across different robot geometries and 

locomotion devices. Two notable aspects of autonomous 

navigation are a guarded motion behavior wherein the robot 

may gracefully adjust its speed and direction near obstacles 

without needing to come to a full stop and an obstacle avoid- 

ance behavior wherein the robot may successfully navigate 

around known obstacles in its environment. Guarded motion 
and obstacle avoidance may work in synergy to create an 

autonomous navigation capability that adapts to the robot’s 

currently perceived environment. Moreover, the behavior 

structure that governs autonomous navigation allows the 

entire assembly of behaviors to be used not only for obstacles 
but for other aspects of the environment that require careful 

maneuvering such as Landmine detection. 

The robot’s obstacle avoidance and navigation behaviors 

are derived from a number of robot attributes that enable the 
robot to avoid collisions and find paths through dense 

obstacles. The reactive behaviors may be configured as nested 

decision trees comprising rules which "fire" based on com- 

binations of these perceptual abstractions. 

The first level of behaviors, which may be referred to as 

action primitives, provide the basic capabilities important to 

most robot activity. The behavior framework enables these 

primitives to be coupled and orchestrated to produce more 

complex navigational behaviors. In other words, combining 

action primitives may involve switching from one behavior to 

another, subsuming the outputs of another behavior or layer- 

ing multiple behaviors. For example, when encountering a 
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dense field of obstacles that constrain motion in several direc- 

tions, the standard confluence of obstacle avoidance behav- 
iors may give way to the high level navigational behavior 

"Get-Unstuck," as is explained more fully below. This behav- 

5 ior involves rules which, when activated in response to com- 

binations of perceptual abstractions, switch between several 

lower level behaviors including "Turn-till-head-is-clear" and 

"Backout." 

4.1.1. Guarded Motion Behavior 

10 FIG. 14 is a software flow diagram illustrating components 

of an algorithm for the guarded motion behavior 500 accord- 
ing to embodiments of the present invention. Guarded motion 

may fuse information from a variety of robot attributes and 

hardware abstractions, such as, for example, motion 

15 attributes, range attributes, and bump abstractions. The 

guarded motion behavior 500 uses these attributes and 

abstractions in each direction (i.e., front, left, right, and back) 

around the robot to determine the distance to obstacles in all 

directions around the robot. 

2o The need for guarded motion has been well documented in 

the literature regarding unmanned ground vehicles. A goal of 

guarded motion is for the robot to be able to &rive at high 
speeds, either in response to the operator or software directed 

control through one of the other robot behaviors or cognitive 

25 conduct modules, while maintaining a safe distance between 
the vehicle and obstacles in its path. The conventional 

approach usually involves calculating this safe distance as a 

product of the robot’s speed. However, this means that the 

deceleration and the distance from the obstacle at which the 

3o robot will actually stop may vary based on the low-level 

controller responsiveness of the low-level locomotor controls 

and the physical attributes of the robot itself (e.g., wheels, 

weight, etc.). This variation in stopping speed and distance 

may contribute to confusion on the part of the operator who 

35 may perceive inconsistency in the behavior of the robot. 

The guarded motion behavior according to embodiments 

of the present invention enables the robot to come to a stop at 

a substantially precise, specified distance from an obstacle 

regardless of the robot’s initial speed, its physical character- 

4o istics, and the responsiveness of the low-level locomotor con- 

trol schema. As a result, the robot can take initiative to avoid 
collisions in a safe and consistent manner. 

In general, the guarded motion behavior uses range sensing 

(e.g., from laser, sonar, infrared, or combinations thereof) of 

45 nearby obstacles to scale down its speed using an event hori- 

zon calculation. The event horizon determines the maximum 

speed the robot can safely travel and still come to a stop, if 

needed, at a specified distance from the obstacle. By scaling 

down the speed by many small increments, perhaps hundreds 

5o of times per second, it is possible to ensure that regardless of 

the commanded translational or rotational velocity, guarded 
motion will stop the robot at substantially the same distance 

from an obstacle. As an example, if the robot is being driven 

near an obstacle rather than directly toward it, guarded motion 

55 will not stop the robot, but may slow its speed according to the 

event horizon calculation. This improves the operator’s abil- 

ity to traverse cluttered areas and limits the potential for 

operators to be frustrated by robot initiative. 

The guarded motion algorithm is generally described for 

6o one direction, however, in actuality it is executed for each 

direction. In addition, it should be emphasized that the pro- 

cess shown in FIG. 14 operates within the RIK framework of 

the global timing loop. Therefore, the guarded motion behav- 

ior 500 is re-entered, and executes again, for each timing loop. 

65 To begin, decision block 510 determines if guarded motion 

is enabled. If not, control transitions to the end of the guarded 

motion behavior. 
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If guarded motion is enabled, control transfers to decision 

block 520 to test whether sensors indicate that the robot may 

have bumped into an obstacle. The robot may include tactile 

type sensors that detect contact with obstacles. If these sen- 

sors are present, their hardware abstractions may be queried 

to determine if they sense any contact. Ifa bump is sensed, it 

is too late to perform guarded motion. As a result, operation 

block 525 causes the robot to move in a direction opposite to 

the bump at a reduced speed that is 20% of a predefined 

maximum speed without turning, and then exits. This motion 

is indicated in operation block 525 as no turn (i.e., T 0) and 

a speed in the opposite direction (i.e., V -20%). 

If no bump is detected, control transfers to decision block 

530 where a resistance limit determination is performed. This 

resistance limit measures impedance to motion that may be 

incongruous with normal unimpeded motion. In this repre- 

sentative embodiment, the resistance limit evaluates true if; 
the wheel acceleration equals zero, the force on the wheels is 

greater than zero, the robot has an inertial acceleration that is 

less than 0.15, and the resulting impedance to motion is 

greater than a predefined resistance limit. If this resistance 

limit evaluation is true, operation block 535 halts motion in 

the impeded direction, then exits. Of course, those of ordinary 

skill in the art will recognize that this is a specific implemen- 

tation for an embodiment with wheels and a specific inertial 

acceleration threshold. Other embodiments, within the scope 

of the present invention, may include different sensors and 

thresholds to determine if motion is being impeded in any 

given direction based on that embodiment’ s physical configu- 

ration and method of locomotion. 

If motion is not being impeded, control transfers to deci- 

sion block 540 to determine if any obstacles are within an 

event horizon. An event horizon is calculated as a predeter- 

mined temporal threshold plus a speed adjustment. In other 

words, obstacles inside of the event horizon are obstacles that 
the robot may collide with at the present speed and direction. 

Once again, this calculation is performed in all directions 

around the robot. As a result, even if an obstacle is not directly 

in the robot’s current path, which may include translational 

and rotational movement, it may be close enough to create a 

potential for a collision. As a result, the event horizon calcu- 

lation may be used to decide whether the robot’s current 

rotational and translational velocity will allow the robot time 

to stop before encroaching the predetermined threshold dis- 

tance. If there are no objects sensed within the event horizon, 

there is no need to modify the robot’s current motion and the 

algorithm exits. 

If an obstacle is sensed within the event horizon, operation 

block 550 begins a "safety glide" as part of the overall timing 

loop to reduce the robot’s speed. As the robot’s speed is 

reduced, the event horizon, proportional to that of the speed, 

is reduced. If the reduction is sufficient, the next time through 

the timing loop, the obstacle may no longer be within the 

event horizon even though it may be closer to the robot. This 

combination of the event horizon and timing loop enables 

smooth deceleration because each loop iteration where the 

event horizon calculation exceeds the safety threshold, the 

speed of the robot (either translational, rotational, or both) 

may be curtailed by a small percentage. This enables a smooth 

slow down and also enables the robot to proceed at the fastest 

speed that is safe. The new speed may be determined as a 

combination of the current speed and a loop speed adjust- 

ment.    For    example    and    not    limitation, 

New_speed current_speed*(0.75-1oop_speed_adjust). The 

loop_speed_adjust variable may be modified to compensate 

for how often the timing loop is executed and the desired 

maximum rate of deceleration. Of course, those of ordinary 
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skill in the art will recognize that this is a specific implemen- 

tation. While this implementation may encompass a large 

array of robot configurations, other embodiments within the 

scope of the present invention may include different scale 

5 factors for determining the new speed based on a robot’s 

tasks, locomotion methods, physical attributes, and the like. 

Next, decision block 560 determines whether an obstacle is 
within a danger zone. This may include a spatial measure- 

ment wherein the range to the obstacle in a given direction is 

10 less than a predetermined threshold. If not, there are likely no 

obstacles in the danger zone and the process exits. 

If an obstacle is detected in the danger zone, operation 

block 570 stops motion in the current direction and sets a flag 

indicating a motion obstruction, which may be used by other 

15 attributes, behaviors or conduct. 
As mentioned earlier, the guarded motion behavior 500 

operates on a global timing loop. Consequently, the guarded 

motion behavior 500 will be re-entered and the process 

repeated on the next time tick of the global timing loop. 

2o 4.1.2. Obstacle Avoidance Behavior 

FIG. 15 is a software flow diagram illustrating components 

of an algorithm for the obstacle voidance behavior 600 that 

governs translational velocity of the robot according to 

embodiments of the present invention. Similarly, FIG. 16 is a 

25 software flow diagram illustrating components of an algo- 
rithm for the obstacle voidance behavior that governs rota- 

tional velocity 650 of the robot. Obstacle avoidance may fuse 

information from a variety of robot attributes and hardware 

abstractions, such as, for example, motion attributes, range 

30 attributes, and bump abstractions. In addition, the obstacle 

avoidance behavior may use information from other robot 

behaviors such as, for example, the guarded motion behavior 
and a get unstuck behavior. The obstacle avoidance behavior 

uses these attributes, abstractions, and behaviors to determine 
35 a translational velocity and a rotational velocity for the robot 

such that it can safely avoid known obstacles. 

In general, the obstacle avoidance behavior uses range 

sensing (e.g., from laser, sonar, infrared, or combinations 

thereof) of nearby obstacles to adapt its translational velocity 

40 and rotation velocity using the event horizon determinations 

explained earlier with respect to the guarded motion behavior. 

As stated earlier, the obstacle avoidance behavior works with 
the guarded motion behavior as building blocks for full 

autonomous navigation. In addition, it should be emphasized 

45 that the processes shown in FIGS. 15 and 16 operate within 

the RIK framework of the global timing loop. Therefore, the 

obstacle avoidance behavior is re-entered, and executes 
again, for each timing loop. 

To begin the translational velocity portion of FIG. 15, 

50 decision block 602 determines if waypoint following is 

enabled. If so, control transfers out of the obstacle avoidance 
behavior to a waypoint following behavior, which is 

explained more fully below. 

If waypoint following is not enabled, control transfers to 

55 decision block 604 to first test to see if the robot is blocked 
directly in front. If so, control transfers to operation block 606 

to set the robot’s translational speed to zero. Then, control 

transfers out of the translational velocity behavior and into the 

rotational velocity behavior so the robot can attempt to turn 

60 around the object. This test at decision block 604 checks for 

objects directly in front of the robot. To reiterate, the obstacle 

avoidance behavior, like most behaviors and conducts in the 
RIK, is temporally based. In other words, the robot is most 

aware of its velocity and whether objects are within an event 

65 horizon related to time until it may encounter an object. In the 

case of being blocked in front, the robot may not be able to 

gracefully slow down through the guarded motion behavior. 
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Perhaps because the object simply appeared in front of the 

robot, without an opportunity to follow typical slow down 

procedures that may be used if an object is within an event 

horizon. For example, the object may be another robot or a 

human that has quickly moved in front of the robot so that the 

guarded motion behavior has not had an opportunity to be 

effective. 

If nothing is blocking the robot in front, decision block 608 

tests to see ifa detection behavior is in progress. A detection 

behavior may be a behavior where the robot is using a sensor 

in an attempt to find something. For example, the counter- 
mine conduct is a detection behavior that is searching for 

landmines. In these types of detection behaviors, obstacle 

avoidance may want to approach much closer to objects, or 

may want to approach objects with a much slower speed to 

allow time for the detection function to operate. Thus, if a 

detection behavior is active, operation block 610 sets a 

desired speed variable based on detection parameters that 

may be important. By way of example and not limitation, in 

the case of the countermine conduct this desired speed may be 

set as: Desired_Spee�Max_passover_rate-(Scan_ampli- 

tude/Scan_Speed). In this countermine conduct example, the 

Max_passover_rate may indicate a maximum desired speed 

for passing over the landmine. This speed may be reduced by 

other factors. For example, the (Scan_amplitude/ 

Scan_Speed) term reduces the desired speed based on a factor 

of how fast the mine sensor sweeps an area. Thus, the Scan_ 

amplitude term defines a term of the extent of the scan sweep 

and the Scan_Speed defines the rate at which the scan hap- 

pens. For example, with a large Scan_amplitude and a small 

Scan_Speed, the Desired_Speed will be reduced significantly 

relative to the Max_passover_rate to generate a slow speed 
for performing the scan. While countermine conduct is used 

as an example of a detection behavior, those of ordinary skill 
in the art will recognize that embodiments of the present 

invention may include a wide variety of detection behaviors, 

such as, for example, radiation detection, chemical detection, 

and the like. 

If a detection behavior is not in progress, decision block 

612 tests to see ifa velocity limit is set. In some embodiments 

of the invention, it may be possible for the operator to set a 

velocity limit that the robot should not exceed, even if the 

robot believes it may be able to safely go faster. For example, 

if the operator is performing a detailed visual search, the robot 
may be performing autonomous navigation, while the opera- 

tor is controlling a camera. The operator may wish to keep the 

robot going slow to have time to perform the visual search. 

Ifa velocity limit is set, operation block 614 sets the desired 

speed variable relative to the velocity limit. The equation 

illustrated in operation block 614 is a representative equation 

that may be used. The 0.1 term is a term used to ensure that the 

robot continues to make very slow progress, which may be 

useful to many of the robot attributes, behaviors, and conduct. 

In this equation, the Speed_Factor term is a number from one 

to ten, which may be set by other software modules, for 

example, the guarded motion behavior, to indicate a relative 

speed at which the robot should proceed. Thus, the desired 

speed is set as a fractional amount (between zero and one in 

0.1 increments) of the Max_Limit_Speed. 

If a velocity limit is not set, operation block 616 sets the 

desired speed variable relative to the maximum speed set for 

the robot (i.e., Max_Speed) with an equation similar to that 

for operation block 614 except Max_Speed is used rather than 

Max_Limit_Speed. 

After the desired speed variable is set by block 610,614, or 

616, decision block 618 tests to see if anything is within the 

event horizon. This test may be based on the robot’s physical 

3O 
dimensions, including protrusions from the robot such as an 

arm, relative to the robot’s current speed. As an example using 

an arm extension, something inside the event horizon may be 

determined by the equation: 

MinFront Range<l.0+Arm Extension+(1.75*Abs 
(Current Velocity)) 

Where the Min_Front_Range indicates a range to an 

obstacle in front, 1.0 is a safety factor, Arm_Extension indi- 

10 cates the distance beyond the robot that the arm currently 

extends, and Current_Velocity indicates the robot’s current 

translational velocity. 

If there is something detected within the event horizon, 

operation block 620 sets the current speed based on the dis- 

15 tance to the obstacle. Thus, the example equation in block 620 
sets the speed based on the range to the object less a Forward_ 

Threshold set as a safety factor. With this speed, guarded 

motion has an opportunity to be effective and the speed may 

be reduced further on the next iteration of the timing loop if 

2o the object is still within the event horizon. After setting the 
speed, control transfers out of the translational velocity 

behavior, and into the rotational velocity behavior. 

If there is nothing detected within the event horizon, opera- 

tion block 622 sets the robot’s current speed to the desired 

25 speed variable that was set previously by operation block 614, 
616, or 618. After setting the speed, control transfers out of 

the translational velocity behavior 600, and into the rotational 

velocity 650. 

FIG. 16 illustrates a representative software flow diagram 

3o illustrating components of an algorithm for the obstacle void- 
ance behavior that governs rotational velocity of the robot. To 

begin the rotational velocity behavior of FIG. 16, decision 

block 652 determines ifwaypoint following is enabled. If so, 

control transfers to decision block 654 to determine if the 

35 angle to a target exceeds a predefined threshold. If so, control 
transfers to decision block 656 to determine if the robot is 

blocked in the waypoint direction. 

At decisionblock 658, the process checks to see if the robot 

is blocked in front. If so, the process performs a series of 

4o checks to see where other obstacles may be to determine a 
desired rotational velocity and direction. This obstacle check- 

ing process begins with decision block 660 testing to see if the 

robot is blocked on the left side. If the robot is blocked on the 

left side, and also in front, operation block 662 sets a new 

45 value for a turn velocity to the right. In the representative 
embodiment illustrated in FIG. 16 a positive rotational veloc- 

ity is defined as a turn to the left and a negative rotational 

velocity is defined as a turn to the right. Thus, generally, 

Turn_left is a positive value indicating a rotational velocity to 

s0 the left and Turn_right is a negative value indicating a rota- 
tional velocity to the right. Thus, operation block 662 reduces 

the rotational velocity in the current direction by about one 

half plus a small offset used to ensure that the rotational 

velocity does not reach zero. After setting the new rotation 

55 velocity, the process exits. 

If the robot is not blocked on the left, decision block 664 
tests to see if the robot is blocked on the right. If so, operation 

block 666 sets a new value for a turn velocity to the right 

similar to that velocity setting in operation block 662. In other 

6o words, set the rotational velocity to the left to about one half 
plus a small offset used to ensure that the rotational velocity 

does not reach zero. After setting the new rotation velocity, 

the process exits. 

If the robot is blocked in the front, but not on the left or 
65 right, the process then decides which way to turn to get around 

the blockage by checking to see whether the nearest obstacle 

in a measurable range is to the right or left and adjusting the 
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rotational velocity to be away from the obstacle. Operation 

block 668 checks to see if the nearest obstacle is to the left. If 

so, operation block 670 sets the rotational velocity to the right 

(i.e., away from the obstacle) at a velocity of 30% of a maxi- 

mum defined rotational velocity. If the nearest obstacle is not 

to the left, operation block 672 sets the rotational velocity to 

the left at a velocity of 30% of a maximum defined rotational 

velocity. After setting the new rotation velocity by either 

operation block 670 or 672, the process exits. 

If the robot was not blocked in front, based on decision 

block 658, then decision block 674 performs a "threading the 
needle process." This starts with decision block 674 deter- 

mining a range to obstacles that may still be in front of the 

robot but not directly blocking the robot. To do this, decision 

block 674 tests to see if Min_Front_Range is greater than two 
times a predefined threshold for the front direction, and to see 

if Min Narrow_Front is greater than two times the robot’s 

length. If both these tests are true, it may be relatively clear in 

front and the process decides to reduce the rotational velocity 

in the current direction to make the direction more straight 

ahead until the next global timing loop. Therefore, decision 

block 676 tests to see if the current rotational direction is left. 

If so, decision block 678 tests to see if the magnitude of the 

left rotational velocity is greater than twice a turn threshold. If 

so, operation block 680 reduces the rotational velocity in the 25 

left direction by one half, and the process exits. If the current 

rotational direction is not left, decision block 682 tests to see 
if the magnitude of the right rotational velocity is greater than 

twice a turn threshold. If so, operation block 684 reduces the 

rotational velocity in the right direction by one half, and the 3o 

process exits. 

If decision block 674, 678, or 682 evaluates false, decision 
block 690 tests to see if anything is currently within the event 

horizon. 
This test may be based on the robot’s physical dimensions, 

including protrusions from the robot such as an arm, relative 

to the robot’s current speed. In addition, this test is likely the 

same as the event horizon described above for the transla- 

tional velocity when discussing decision block 618 on FIG. 

15. In other words, is the Minimum_Front_Range less than an 

Event_Range? Wherein the Event_Range 1.0+Arm_Exten- 

sion+(1.75 *Abs (Current_Velocity)). 

If there is nothing within the event horizon (i.e., decision 

block 690 evaluates false), there is likely no need to change 

the current rotational velocity so the process exits. If there is 45 

something within the event horizon, but not within the thread- 

ing the needle process or blocking the robot in front, the 

rotational velocity may be adjusted at a more gradual rate. 

Thus, if decision block 690 evaluates true, decision block 692 
tests to see if the closest object is on the left side. If so, 5o 

operation block 694 sets a new rotational velocity to the right. 

If the closest object is not on the left, operation block 696 sets 

a new rotational velocity to the left. The rotational velocity 

that is set in operation blocks 694 and 696 is similar except for 

direction. In this representative embodiment, the rotational 55 

velocity may be set as a function of the Event Range from the 

event horizon test of decision block 690. Thus, the rotational 
velocity may be set as: 
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4.2. Get Unstuck Behavior 

A get unstuck behavior 700, as illustrated in FIG. 17, 

includes significant robot initiative to extricate itself from the 

stuck position with little or no help from the operator. Some- 
5 times, when a robot is operating under its own initiative, or 

even under operator control, the robot may get stuck and have 

difficulty getting free from that position. Often times, the 

operator may have limited understanding of the robot’s posi- 

10 
tion relative to the robot’s understanding with its wide variety 

ofperceptors. In general, the get unstuck behavior 700 may 

use range sensing (e.g., from laser, sonar, infrared, or combi- 

nations thereof) to determine nearby obstacles and their posi- 

tion relative to the robot. 

15 The get unstuck behavior 700 begins at decision block 710 

by determining if the current path is blocked. This blocked 

situation may be defined as an obstacle present in front, on the 

front-right side, and on the front-left side. If the path is 

blocked, control transfers to operation block 740, which is 
2o explained below. For an example, and using the range defini- 

tions defined above under the description of the range 

attribute, a blocked path may be defined by the Boolean 

equation: 

Blocked = 
((fightin front < (robot->forward thresh + 0.2)) II 
FRONTBLOCKED) && 

(1 front < (robot->forward thresh* 2)) && 
(rfront < (robot->forward thresh * 2)) && 
(left front < (robot->forward thresh * 2)) && 
(rightfront < (robot->forward thresh * 2)) 

Wherein: (robot->forward_thresh) is a predetermined 
35 

threshold parameter, that may be robot specific, to define a 

safety distance, or maneuverability distance, away from the 

robot. 

If the path is not blocked, decision block 720 determines if 

4o forward motion and turning motion is obstructed. If motion is 

obstructed, control transfers to operation block 740, which is 

explained below. For an example, this motion obstruction 

may be determined by the Boolean equation: 

Obstructed nrution = 

(FR LEFT BLOCKED II RRIGHT BLOCKED) && 
(FR RIGHTBLOCKED II L LEFTBLOCKED) && 
FRONTBLOCKED 

If motion is not obstructed, decision block 730 determines 
if the robot is in a box canyon. If the robot is not in a box 

canyon, the get unstuck behavior exits because it appears the 

robot is not in a stuck situation. If the robot is in a box canyon, 

control transfers to operation block 740. For an example, this 

box canyon situation may be defined by the Boolean equa- 

tion: 

(EventRange-Min FrontRange)/4. 
6O 

After setting the rotational velocity in either operation 

block 694 or 696, the process exits. 

As mentioned earlier, the obstacle avoidance behavior 600 
operates on the global timing loop. Consequently, both the 

translational velocity and rotational velocity may be adjusted 65 

again on the next time tick of the global timing loop, allowing 

for relatively quick periodic adjustments to the velocities. 

Boxcanyon = 
(rightin front < (robot->forward thresh + .2)) && 
(rightfront < (robot->forward thresh * 2.0)) && 

(left front < (robot->forward thresh * 2.0)) && 
((right side + left side) < (robot->turn thresh * 3.0)) && 

(BACK BLOCKED=0) 
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Wherein: (robot->turn_thresh) is a predetermined thresh- 
old parameter, which may be robot specific, to define a 
maneuverability distance that enables the robot to turn 
around. 

Once the determination has been made that the robot may 
be stuck, operation block 740 begins the process of attempt- 
ing to get unstuck. Operation block 740 performs a back-out 
behavior. This back-out behavior causes the robot to backup 
from its present position while following the contours of 
obstacles near the rear sides of the robot. In general, the 
back-out behavior uses range sensing (e.g., from laser, sonar, 
infrared, or combinations thereof) of nearby obstacles near 
the rear sides to determine distance to the obstacles and pro- 
vide assistance in following the contours of the obstacles. 
However, the back-out behavior may also include many robot 
attributes, including perception, position, bounding shape, 
and motion, to enable the robot to turn and back up while 
continuously responding to nearby obstacles. Using this 
fusion of attributes, the back-out behavior doesn’t merely 
back the robot up, but rather allows the robot to closely follow 
the contours of whatever obstacles are around the robot. 

For example movements, the robot may attempt to equalize 
the distance between obstacles on both sides, keep a substan- 
tially fixed distance from obstacles on the right side, or keep 
a substantially fixed distance between obstacles on the right 
side. As the back-out behavior progresses, decision block 780 
determines if there is sufficient space on a side to perform a 
maneuver other than backing out. If there is not sufficient 
space, control transfers back to operation block 740 to con- 
tinue the back-out behavior. If there is sufficient space on a 
side, control transfers to operation block 760. As an example, 
the sufficient space on a side decision may be defined by the 
Boolean equation: 

Space on side=space on leflllspace on right, wherein: 
Space on left= 

(1 front > (robot->forward thresh + .2)) && 
(turn left > (robot->arm length + robot->tttrn thresh + .2)) && 
(turn left >= turn right) 

Space onright = 

(rfront > (robot->forward thresh + .2)) && 
(turn right > (robot->aml length + robot->turn thresh + .2)) && 
(turn right >= tttrn left)) 

Once sufficient space has been perceived on the right or 
left, operation block 760 performs a turn-until-head-is-clear 
behavior. This behavior causes the robot to rotate in the suf- 
ficient space direction while avoiding obstacles on the front 
side. As the turn-until-head-is-clear behavior progresses, 
decision block 770 determines if, and when, the head is actu- 
ally clear. If the head is not clear, control transfers back to the 
operation block 760 to continue the turn-until-head-is-clear 
behavior. If the head is clear, control transfers to operation 
block 760. 

Once the head is clear, decision block 780 determines 
whether an acceptable egress route has been found. This 
egress route may be defined as an acceptable window of open 
space that exists for the robot to move forward. To avoid 
potential cyclical behavior, the acceptable window may be 
adjusted such that the robot does not head back toward the 
blocked path or box canyon. If an acceptable egress route has 
not been found, control transfers back to operation block 740 
to attempt the back-out behavior again. If an acceptable 
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egress route is found, the unstuck behavior exits. As a specific 
example, the window may be defined by the equation: 

window 1.25 meters-(seconds-in-behavior/10.0); and 
the egress route may be defined as tree if the 

window<(robot->forward tkresh*2.5). 

As with the guarded motion behavior, the get-unstuck 

behavior 700 operates on a global timing loop. Consequently, 
the get-unstuck behavior 700 will be re-entered and the pro- 

10 cess repeated on the next time tick. 

4.3. Real-Time Occupancy Change Analysis 

FIG. 18 is a software flow diagram illustrating representa- 

tive components of an algorithm for performing a real-time 

occupancy change analysis behavior 800. Despite the much 
15 discussedpotential for robots to play a critical role in security 

applications, the reality is that many human presence and 

motion tracking techniques require that the sensor used in 

tracking be stationary, removing the possibility for placement 

on a mobile robot platform. In addition, there is a need to 
2o determine substantially accurate positions for changes to rec- 

ognized environmental features within a map. In other words, 

it may not be enough to know that something has moved or 

even the direction of movement. For effective change detec- 

tion, a system should provide a substantially accurate position 
25 of the new location. 

The Real-Time Occupancy Change Analyzer (ROCA) 

algorithm compares the state of the environment to its under- 

standing of the world and reports to an operator, or supporting 

30 
robotic sensor, the position of and the vector to any change in 

the environment. The ROCA robot behavior 800 includes 

laser-based tracking and positioning capability that enables 

the robot to precisely locate and track static and mobile fea- 

tures of the environment using a change detection algorithm 

that continuously compares current laser scans to an occu- 
35 

pancy grid map. Depending on the laser’s range, the ROCA 

system may be used to detect changes up to 80 meters from 

the current position of the laser range finder. The occupancy 

grid may be given a priori by an operator, built on-the-fly by 

the robot as it moves through its environment, or built by a 
40 

combination of robot and operator collaboration. Changes in 

the occupancy grid may be reported in near real-time to 

support a number of tracking capabilities, such as camera 

tracking or a robotic follow capability wherein one or more 

robots are sent to the map location of the most recent change. 
45 

Yet another possible use for the ROCA behavior is for target 

acquisition. 

A notable aspect of the ROCA behavior is that rather than 

only providing a vector to the detected change, it provides the 

50 actual X, Y position of the change. Furthermore, the ROCA 
behavior can operate "on-the-move" meaning that unlike 

most human presence detection systems which must be sta- 

tionary to work properly, it can detect changes in the features 

of the environment around it apart from of its own motion. 

55 This position identification and on-the-move capability 
enable tracking systems to predict future movement of the 

target and effectively search for a target even if it becomes 
occluded. 

In general, once the robot has identified a change, the 

6o change may be processed by several algorithms to filter the 

change data to remove noise and cluster the possible changes. 

Of the clustered changes identified, the largest continuous 

cluster of detected changes (i.e., "hits") may be defined as 

locations of a change (e.g., possible intruder) within either the 

65 global coordinate space, as a vector from the current pose of 

the robot, other useful coordinate systems, or combinations 

thereof. This information then may be communicated to other 
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robot attributes, robot behaviors, and cognitive conduct 
within the RIK as well as to other robots or an operator on a 

remote system. 

As discussed earlier when discussing the range attribute, a 
variety of coordinate systems may be in use by the robot and 

an operator. By way of example, a local coordinate system 
may be defined by an operator relative to a space of interest 

(e.g., a building) or a world coordinate system defined by 

sensors such as a GPS unit, an iGPS unit, a compass, an 

altimeter, and the like. A robot coordinate system may be 

defined in Cartesian coordinates relative to the robot’s orien- 

tation such that, for example, the X-axis is to the right, the 

Y-axis is straight ahead, and the Z-axis is up. Another robot 

coordinate system may be cylindrical coordinates with a 

range, angle, and height relative to the robot’s current orien- 

tation. 

The software flow diagram shown in FIG. 18 includes 

representative components of an algorithm for performing the 
ROCA behavior 800. As stated earlier, the ROCA process 800 

assumes that at least some form of occupancy grid has been 

established. However, due to the global timing loop execution 

model, details, probabilities, and new frontiers of the occu- 

pancy grid may be built in parallel with the ROCA process 

800. The ROCA process 800 begins at decision block 810 by 

testing to determine if the robot includes lasers, the laser data 

is valid, an occupancy grid is available, and the ROCA pro- 

cess is enabled. If not, the ROCA process 800 ends. 

If decision block 810 evaluates true, process block 820 

performs a new laser scan, which includes obtaining a raw 

laser scan, calculating world coordinates for data included in 

the raw laser scan, and converting the world coordinates to the 

current occupancy grid. The raw laser scan includes an array 

of data points from one or more laser sweeps with range data 

to objects encountered by the laser scan at various points 

along the laser sweep. Using the present occupancy grid and 

present robot pose, the array of range data may be converted 

to an occupancy grid (referred to as laser-return occupancy 

grid) similar to the present occupancy grid map. 

Next, decision block 830 tests to see if the current element 
of the array of range data shows an occupancy element that is 

the same as the occupancy element for the occupancy grid 

map. If so, control passes to decision block 860 at the bottom 

of the range data processing loop, which is discussed later. 

If there is a difference between the laser-return occupancy 

cell and the corresponding cell for the occupancy grid map, 

decision block 840 tests the laser-return occupancy cell to see 

if it is part of an existing change occurrence. In other words, 

if this cell is adjacent to another cell that was flagged as 

containing a change, it may be part of the same change. This 

may occur, for example, for an intruder, that is large enough 

to be present in more than one occupancy grid. Of course, this 

test may vary depending on, for example, the granularity of 

the occupancy grid, accuracy of the laser scans, and size of the 

objects of concern. If decision block 840 evaluates true, 

operation block 842 clusters this presently evaluated change 

with other change occurrences that may be adjacent to this 

change. Then control will transfer to operation block 848. 

If decision block 840 evaluates false, the presently evalu- 

ated change is likely due to a new change from a different 

object. As a result, operation block 844 increments a change 

occurrence counter to indicate that there may be an additional 

change in the occupancy grid. 

Operation block 848 records the current change occur- 

rences and change clusters whether from an existing cluster or 

a new cluster, then control transfers to decision block 850. 
Decision block 850 tests to see if the change occurrence 

counter is still below a predetermined threshold. If there are a 

36 
large number of changes, the changes may be due to inaccu- 

racies in the robot’s current pose estimate. For example, if the 

pose estimate indicates that the robot has turned two degrees 

to the left, but in reality, the robot has turned five degrees to 

5 the left, there may be a large number of differences between 

the laser-return occupancy grid and the occupancy grid map. 

These large differences may be caused by the inaccuracies in 

the pose estimate, which would cause inaccuracies in the 

conversion of the laser scans to the laser-return occupancy 

10 grid. In other words, skew in the alignment of the laser scan 

onto the occupancy grid map due to errors in the robot’ s pose 

estimation, from rotation or translation, may cause a large 

number of differences. If this is the case, control transfers to 
operation block 880 to update the position abstraction in an 

15 attempt to get a more accurate pose estimate. After receiving 

a new pose estimate from the position abstraction, the ROCA 

process begins again at decision block 810. 

If decision block 850 evaluates true or decision block 860 

was entered from decisionblock 830, decisionblock 860 tests 
20 to see if there are more data points in the laser scan to process. 

If so, control transfers back to decision block 830 to process 

the next element in the laser scan array. 

If decision block 850 evaluates false, all the data in the laser 
scan array has been processed and decision block 870 again 

25 tests to see if the change occurrence counter is still below a 

predetermined threshold. As discussed earlier, if the change 

occurrence counter is not below the predetermined threshold, 

operation block 880 updates the position abstraction in an 

attempt to get a more accurate pose estimate, the ROCA 

30 process begins again at decision block 810. 

If decision block 870 evaluates true, then processing for 

this laser scan is complete and operation block 890 updates a 

change vector and information regarding change occurrences 

and change clusters is made available to other robot attributes, 

35 robot behaviors, and cognitive conduct modules. 

By way of example and not limitation, the ROCA results 

may be sent to the user interface, used by a tracking behavior, 

and combinations thereof. For example, ROCA results may 

be used with additional geometric calculations to pan a visual 

40 camera, a thermal camera, or combination thereof to fixate on 
one or more of the identified changes. Similarly, a manipula- 

tor, such as, for example, a weapon may be panned to acquire 

a target identified as one of the changes. If the detected change 

is moving, tracking position updates may arrive in near real 
45 time (the actual rate may depend on the speed and latency of 

the communication channel), allowing various sensors to 

continuously track the target. If desired, the robot may also 

continuously move to the new location identified by the 

change detection system to provide a mobile tracking capa- 

50 bility. 

When coupled with an operator interface, the tracked enti- 

ty’s movements may be indicated to an operator in near real 

time and visual data from a camera can be used by the opera- 

tor to identify the tracked entity. 

55 As with other behaviors, the ROCA behavior 800 operates 

on the global timing loop. Consequently, the ROCA behavior 

800 will be re-entered and the process repeated on the next 

time tick. 

4.4. Virtual Rail Conduct 

6o One representative cognitive conduct module enabled by 

the RIK and GRA is a virtual rail system for robots. Many 

industrial and research applications involve moving a vehicle 

or target at varying speeds along a designated path. There is a 

need to follow physical paths repeatably either for purposes 

65 of transport, security applications or in order to accurately 

record and analyze information such as component wear and 

tear (e.g., automotive testing), sensor responsiveness (e.g., 



US 7,801,644 B2 
37 

sensor characterization), or environmental data (e.g., moni- 

toring). Such applications require both accuracy and repeat- 

ability. 

Conventional practice methods have required the building 

of physical or actual tracks along which a vehicle can be 

moved. Drawbacks of such an approach include the signifi- 

cant limitations of the configuration of paths that may be 

created and the feasibility of building permanent tracks. Also, 

for characterization and other readily modifiable tasks, recon- 

figuration of physical track networks quickly becomes cost 

and time prohibitive. 

Although it has long been known that physical tracks or 

rails are problematic, mobile robots have not had a means by 

which to maintain accurate positioning apart from such fixed- 

track methods. For some tasks, absolute positioning can be 

achieved by various instrumented solutions such as visual, 

laser-based tracking systems or radio frequency positioning 

systems that triangulate distance based on beacons placed in 

the environment. Each of these systems is costly to imple- 

ment; in fact, the cost for purchasing and installing such a 

positioning system is often more than the total cost of the 

robot itself. 

Moreover, the utility of visual or laser tracking systems is 

limited by occlusions within the environment. For example, 

RF beacons are only appropriate for environments where the 
beacons can be fixed in a static, known location. The physical 

properties of a remote sensing environment are constantly 

changing. In fact, walls are often shifted within the building to 

model different operational environments. Accordingly, 

absolute positioning is sometimes less feasible, impractical 

and frequently impossible to implement. Therefore, there is a 

need to provide a method and system for configuring a virtual 

track or rail system for use by a robot. 

The present invention includes various embodiments 

including a robot system configured to follow pre-planned 

routes forming a "virtual rail" or "virtual track" and may 

include defined speeds for traversing various segments of the 

pre-planned routes. One application of a virtual rail system 

includes the repeated testing of a sensor or system to charac- 

terize the device. Due to the accuracy and repeatability of the 

virtual rail system, sensors and systems may be tested with 

data collected that conforms to a "sufficient comparable data" 

standard. Such a data collection standard requires acceptance 

of data only when consistent and comparable data is gener- 

ated in response to repeatable tests carried out under the same 

conditions. For example, the virtual rail system may be used 

in a laboratory, research facility, or manufacturing environ- 

ment to characterize a vast number of sensors. Accordingly, 

characterization tests that may previously have required a 

significant amount of time for execution may now be charac- 

terized in a fraction of the time. 

Sensor characterization is only one example of a specific 

application. Other applications include automated mail carts 

and other delivery systems, security and surveillance sys- 

tems, manufacturing and monitoring systems. In particular, 

the technology is useful for parts handling, as well as replace- 

ment of current railed robotic systems, especially within the 

manufacturing and defense industries. 

FIG. 19 is a block diagram of a robot system for imple- 

menting a virtual track for a robot, in accordance with an 

embodiment of the present invention. A robot system 2100 

includes a robot 2102 and a control generation system 2104. 

In robot system 2100, a user interfaces with control genera- 

tion system 2104 to implement a virtual track for tracking or 

following by the robot 2102. Robot 2102 is responsive to 

programming commands generated by control the generation 

system 2104 and further conveys feedback and sensor infor- 

38 
mation to control generation system 2104 over communica- 

tion interface 2106. A user, by interfacing through a user 

interface of control generation system 2104, designates a 

desired path comprised of one or more representative path 
5 segments. In the various embodiments of the present inven- 

tion, robot 2102 is configured or programmed to follow a 

virtual track or a virtual rail similar in resulting operation to a 

robot following a fixed track or physical rail. In the various 

embodiments of the present invention, however, the short- 
10 comings of a fixed physical rail configuration are overcome 

by enabling the formation of a virtual track or rail system 

without the appreciated physical and economical limitations 

associated therewith. 

FIG. 20 illustrates a user interface for generating a desired 
15 path representative of a virtual track or virtual rail, in accor- 

dance with an embodiment of the present invention. A user 

interface 2120 operating on a conventional computer or other 

hosting interface provides an environment wherein a user 

may configure and readily reconfigure a virtual track or rail 
20 configuration for execution and following by a robot. 

The user interface 2120 provides an environment for the 

generation of a desired path comprised of at least one segment 

representative of the virtual track for the robot. The user 

interface 2120 may take the form of a Computer Aided 
25 

Design (CAD) program for the formation of the desired path. 

The desired path, comprised of one or more segments repre- 

sentative of the virtual track for the robot, may take the form 

of lines, arcs or any of a number of design shapes known by 

30 
those of ordinary skill in the art, and are collectively referred 

to herein as "segments." By way of example, a desired path 

2122 includes a plurality of line segments 2124-2132 with 

line segment 2132 illustrated as being selected. Line seg- 

ments 2124-2132 may be generated using any of a number of 
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commercially available CAD systems that may generate file 

formats that are readily convertible and parsable. By way of 

example and not limitation, the CAD file format may be 

directly saved or converted into a file format such as Drawing 

Exchange Format (.dxt). 

40 FIG. 21 is a process diagram for configuring the desired 
path into a waypoint file for implementing a virtual track or 

rail and for execution by a robot, in accordance with an 

embodiment of the present invention. A virtual track or rail is 

specified in the form of a desired path 2122 (FIG. 20) includ- 

45 ing at least one segment representative of the virtual track as 
input through the user interface 2120 (FIG. 20). The graphical 

input of the desired path is converted or stored in a form that 

is capable of further processing or manipulation by the con- 

trol generation system 2104 (FIG. 19) which generates pro- 

50 gramming commands destined for execution by robot 2102 
(FIG. 19). By way of example and not limitation, the stored 

format for the desired path of the one or more segments 

representative of the virtual track may be a drawing file 2202. 

The format of drawing file 2202, among others, includes file 

55 formats (e.g., .dxf) configured to represent various line seg- 
ments, arcs and other drawing elements as expressed by a user 

through a graphical user interface 2120 (FIG. 20). 

A path plan process 2204 receives the CAD-generated 

drawing file 2202 and processes the one or more segments of 

6o the desired path into a waypoint file 2206 that includes 
instructions that are capable of being executed by robot 2102 

(FIG. 19). The processing of drawing file 2202 includes the 

assignment process 2208 of input velocities 2200 to the seg- 

ments or vertices of the desired path segments or elements. A 

65 verification process 2210 analyzes the desired input veloci- 

ties 2200 by comparing the velocities with the mobility capa- 

bilities of robot 2102 (FIG. 19). Discrepancies or incompat- 
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ibilities between the desired path and input velocities as 
compared with the execution capabilities of robot 2102 are 

reported and/or resolved. 

Path plan process 2204 further includes a waypoint gen- 

eration process 2212 for generating waypoint file 2206 that 

precipitates from the original drawing file 2202 undergoing 
assignment process 2208, followed by verification process 

2210 for determining the compatibilities of the desired path 

and the robot capabilities. Waypoint file 2206 includes a 

listing of waypoints as well as any modified velocities 2214 

which may be different than the originally specified input 

velocities 2200. 

FIG. 22 illustrates a user interface for further processing 

the desired path into a program for execution by a robot, in 

accordance with an embodiment of the present invention. A 
path plan process user interface 2420 provides an environ- 

ment for the rendering of a previously defined drawing file 

2202 (FIG. 21) and further enables the generation of a way- 

point file 2206 (FIG. 21) through the assignment of start and 

end points 2440, 2442 to the desired path 2422 as well as the 
association of velocities with such paths. The desired path 

2422, comprised of one or more segments 2424-2432 repre- 

sentative of the virtual track for the robot, thereafter includes 
assigned motion qualities and characteristics including start 

and end points 2440, 2442 to the desired path 2442 as well as 
assigned input velocities 2200 (FIG. 21) or speeds that should 

be executed by robot 2102. 

As stated, the one or more line segments 2424-2432 with 

the assigned motion qualities is compared or verified through 

verification process 2210 (FIG. 21) with the performance 

capabilities of a specific robot 2102 which compares the 

requested desired path with mobility limitations and capabili- 

ties of robot 2102. In one embodiment of the present inven- 

tion, an algorithm analyzes the path including traversal of the 
segments at various speeds, including velocity transitions 

between line and arc segments and determines the turn gain to 

insure minimal oscillations during traversal of the line seg- 

ments. Furthermore, the algorithm is capable of carving 

smooth arcs by adjusting the turn gain based on an analysis of 

the arc shape and the commanded forward velocity. This 

algorithm provides the ability to arbitrate between waypoint 

following and motor schema control as speed and point types 

change. 

After resolution of any inconsistencies or incompatibili- 

ties, a waypoint file 2206 (FIG. 21) is generated by path plan 

process 2204 with waypoint file 2206 (FIG. 21) being trans- 

ferred over communication interface 2106 (FIG. 19) to robot 
2102 (FIG. 19) for execution. Robot 2102, executing the 

various waypoints and specified velocities 2214 (FIG. 21) 

associated therewith, traces out or follows a virtual track or 
virtual rail as specified and/or modified by a user through the 

control generation system 2104 (FIG. 19). 

The user interface 2420 for controlling path plan process 

2204 (FIG. 21) enables a user to generate commands in the 

form of waypoint file 2206 (FIG. 21) for execution by robot 

2102, which results in the formation of a virtual rail or track 
that is followed or traced by robot 2102. The virtual track or 

rail may be created from an abstraction or may be generated 

with reference to an available map or other boundary desig- 

nations of the operating environment. Furthermore, accurate 

positioning of the robot 2102 (FIG. 19) may be maintained by 

application of Markov localization techniques that may com- 
bat problems such as odometry drift. Generation ofwaypoint 

file 2206 (FIG. 21) allows a robot 2102 (FIG. 19), given 

accurate position data, to traverse a trace of arcs and lines at 

various speeds. The various embodiments of the present 

invention may utilize various mapping or localization tech- 

4O 
niques including positioning systems such as indoor GPS, 
outdoor GPS and DGPS, a theodolite system as well as others 

which may be devised in the future. 

As stated in FIG. 22, desired path 2422 includes a plurality 
5 of line segments 2424-2432. Through the use of the user 

interface 2420, start point 2440 and end point 2442 may be 

selected with each individual line segment 2424-2432 being 

individually selected thereby allowing the association of a 

velocity therewith. By way of example, line segment 2432 is 
10 illustrated as being selected with a representative speed of 0.5 

meters per second being associated therewith. The path plan 

process 2204 (FIG. 21) through user interface 2420 uses the 

properties of each segment within drawing file 2202 (FIG. 21) 

to spatially locate each segment (e.g., line or arc) and then 
15 creates a default path based on the initial order of segments 

found in the drawing file 2202. 

Path plan process 2204 (FIG. 21), through user interface 

2420, can be used to manipulate various properties of the 

initial desired path 2422. For example, when segment 2432 is 
2o selected, the segment is highlighted in the user interface 2420. 

Once a segment is highlighted, its properties are displayed 

and can be edited, if desired. The order of segments can be 

changed, for example, either by using the "Move Up" and 

"Move Down" buttons or by selecting and dragging a seg- 
25 ment to its new position. Each segment can be included or 

excluded, for example, from the path by appropriately mark- 

ing the "Include this entity in the path" checkbox. This allows 

additional features that are not part of the path to be included 

in the drawing file without the requirement that they be a part 
30 of the virtual track or rail. Additional input boxes may be 

provided to set the initial speed, the final speed or constant 

acceleration, and provide for comments for each segment. 

Once motion characteristics, such as velocity, have been 

associated with each of the line segments 2424-2432, other 
35 

processing may be performed such as an estimation of run 

time as well as verification of velocity transitions 2210 (FIG. 

21). Once velocities have been associated therewith and veri- 
fication of compatibility with the capabilities of the target 

robot have been performed, a waypoint file 2206 (FIG. 21) 
40 

may be generated by activating generate waypoint process 

2212 (FIG. 21) within the user interface 2420. 

FIG. 23 is a diagram illustrating transformation according 
to path plan process 2204 (FIG. 21) from a drawing file to a 

45 waypoint file, in accordance with an embodiment of the 
present invention. A drawing file 2202 as received and gen- 

erated in a user interface 2120 is transformed as stated above, 
with respect to FIG. 21, from a drawing file 2202 to a way- 

point file 2206 according to path plan process 2204 (FIG. 21). 

5o As stated, drawing file 2202 is a limited expression of graphi- 
cal segments and must be augmented through path plan pro- 

cess 2204 to include, among other things, motion character- 

istics such as velocities as well as execution ordering of the 

segments. Additionally, for the generation of waypoint file 

55 2206, the information in drawing file 2202 also undergoes 
verifications to determine if input velocities 2200 (FIG. 21) 

are within the capabilities of the robot. 

By way of example and not limitation, waypoint file 2206 
assumes one or more formats, an example of which is illus- 

6o trated with respect to FIG. 23. Waypoint file 2206 may 

include an estimated traversal time 2402 identifying a sum- 

mation of the traversal times of each segment of the virtual 

track. By way of example, waypoint file 2206 includes a 

listing of ordered vertices identifying the waypoints 2404- 

65 2414 fortraversalbytherobot2102 (FIG. 19). Eachwaypoint 

2404-2414 includes a waypoint number indexed according to 

order as previously described, X- andY-coordinate values, a 
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velocity value, and an arc continuation flag for associating a 

set ofwaypoints for short line segments that comprise an arc 

traversal. 

FIG. 24 is a functional block diagram of a control process 

of a robot, in accordance with an embodiment of the present 

invention. Robot control process 2300 executes a waypoint 

file to trace-out or follow a virtual track or rail first defined and 

processed within the control generation system 2104 (FIG. 

19). Robot control process 2300 includes a localization pro- 

cess 2302 wherein the robot processes environmental param- 

eters including physical boundaries to determine a present 

frame of reference for use in alignment or referencing the 

virtual track or rail. Localization is a continuous process that 

the robot uses to determine its present location with reference 

to its internal map. For example, when the robot first starts 
executing the waypoint file 2304, the robot’s start point is the 

origin (0,0) with positive X in the forward direction for ref- 

erencing the internal map. As the robot moves around, the 

robot locates items in the operating environment and then 

places those items in the robot’s internal map. As the robot 

continues to move, the robot may encounter familiar features 

with an expectation that the recognized features are located in 
the same relative position. However, if the features have 

moved relative to where the robot believes the features should 

be, then the robot assumes that the robot may not be in the 

right place on the internal map. The continual correction of 

the robot’s position in the internal map may be described as 

"localization." 

The localization process 2302 of the robot allows the robot 

to accurately and repeatedly trace the waypoints forming the 

virtual rail or track. The waypoint navigation process 2306 

responds to the localization process 2302 and sensor data 

from sensor process 2310 to generate controls to the robot 

motion process 2308. Additionally, the robot uses sensor data 

from sensor process 2310 to determine surrounding features. 

The robot control process 2300 does not need to necessarily 

identify the composition or identity of the features, but only 

the fact that they are part of the environment which forms 

boundaries for the robot. Robot 2102 may utilize one or more 

sensors for providing feedback to the localization process 

2302. Sensors may include wheel measuring devices, laser 

sensors, ultrasonic sensors, and the like. 
Waypoint navigation process 2306 generates commands or 

control signals to a robot motion process 2308. Robot motion 

process 2308 generates controls to actuators for generating 

motion, rotation, etc., as well as velocities associated there- 
with. Waypoint navigation process 2306 further receives 

from sensor process 2310 sensor information in the form of 

feedback for determining when traversal of one or more seg- 

ments of the virtual rail has been accomplished. Sensor pro- 

cess 2310 may also provide information to waypoint naviga- 

tion process 2306 in the form of changes to environmental 

parameters which enables waypoint navigation process 2306 

to protect or guard against unforeseen changes to the envi- 

ronment. Additional details with respect to waypoint naviga- 

tion are described below with respect to FIGS. 26-28. 

FIG. 25 is a flow chart 2500 of a method for implementing 

a virtual track for a robot, in accordance with an embodiment 
of the present invention. An execution of a robot traversing a 

virtual rail is initiated by a user developing a desired path for 

the robot to follow using a drawing package to generate 2510 

a drawing file. 

As stated, a drawing file or other illustration of a desired 

path is generated 2510 and includes at least one segment 

representative of the virtual track to be configured for the 
virtual track which the robot will traverse. Generation of a 

desired path results in the creation of a specific file format 
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representing the illustrated segments of the desired path. The 

file format, in one embodiment of the present invention, is 

converted 2520 into a standardized file format, an example of 

which is the .dxf format. Generation 2510 and converting 

5 2520 steps may be accomplished through the use of one or 

more applications which are made usable through a user 

interface, such as user interface 2120 (FIG. 20). 
Through path plan process 2204 (FIG. 21) and as further 

illustrated with respect to a user interface 2420 (FIG. 22), the 

10 drawing file 2202 (FIG. 23) is imported 2530 and start points 

2440 (FIG. 22), endpoints 2442 (FIG. 22) and segment order- 

ing may be assigned 2540 to the various segments of the 

desired path 2422 (FIG. 22). Through verification process 
2210 (FIG. 21), continuity may be checked or verified 2550 

15 and input velocities 2200 (FIG. 21) may be assigned 2560 to 

the various segments 2424-2432 (FIG. 22) of the desired path 

2422 (FIG. 22). Further checking and reporting 2570 of 

inconsistencies or incompatibilities may also be performed. 

Once the desired path 2422 has been illustrated and start 

2o and end points 2440, 2442, as well as velocities have been 

associated therewith, as well as a successful completion of 

verification processes, a waypoint list 2206 (FIG. 23) is gen- 

erated 2580 and stored in a waypoint file. Upon completion of 

the generation of waypoint file 2206 (FIG. 21) by control 

25 generation system 2104 (FIG. 19), the waypoint file 2206 is 

sent 2590 via a communication interface 2106 (FIG. 19) to a 
robot 2102 (FIG. 19). Thereafter, robot 2102 may execute 

2600 a first waypoint from waypoint file 2206 and subse- 

quently execute 2610 a second and subsequent waypoint 

3o using waypoint navigation process 2306 (FIG. 24). 

4.5. Waypoint Following Behavior 

FIGS. 26, 27, and 28 are software flow diagrams illustrat- 

ing representative algorithms for performing waypoint fol- 

lowing according to embodiments of the present invention. 

35 The waypoints may come from an algorithm such as the 

virtual robot rail system described above, interaction with an 

operator, interaction with other robots, internally generated, 

or combinations thereof. FIG. 26 illustrates components of a 

handler algorithm for handling transitions between way- 

4o points, FIG. 27 illustrates handling of translational velocities 

during waypoint following, and FIG. 28 illustrates handling 

of rotational velocities during waypoint following. 

The waypoint handler, illustrated in FIG. 26, starts with 

decision block 902 to test whether path planning is active and 
45 the time since the achieving the last waypoint is greater than 

a threshold. In the representative embodiment of FIG. 26, the 

threshold is set at three seconds. If sufficient progress has not 

been made toward a waypoint within the threshold, there may 

be a barrier blocking the robot’s progress toward the way- 

5o point. For example, perhaps a door was closed that the way- 

point planning had assumed was open, or perhaps a new 
obstacle was placed in the environment such that the robot 

cannot find a way around the obstacle to achieve the next 

waypoint. In these types of circumstances, it may be appro- 

55 prate to plan a new path with a new waypoint list. Thus, if 

path planning is active and the threshold is exceeded, opera- 

tion block 904 performs a routine to delete the current way- 

point list and plan a new waypoint list, then control transfers 

to decision block 906. 

6o If decision block 902 evaluates false, or operation block 

904 completes, decision block 906 tests to see if the current 

waypoint is defined as part of an arc. If the current waypoint 

is part of an arc, operation block 908 sets a variable named 

Waypoint_Radius as the current speed times one half of the 

65 robot’s length. This Waypoint_Radius variable is used later as 

a test threshold when determining how close the robot is to the 

waypoint. If the current waypoint is not part of an arc, opera- 
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tion block 910 sets Waypoint_Radius to one half the robot’s 

length plus one half the length of the arm extension. Thus, the 

waypoint radius is defined as the physical extent of the robot 

from the Robot’s center. 

With the Waypoint_Radius variable set, decision block 912 

tests to see if the angle to the target waypoint is currently less 
than 90 degrees to the left or right. If so, operation block 914 

sets the range to the target as the closest range within plus or 
minus 15 degrees of the current angle to the target. If the 

waypoint is not less than 90 degrees away, operation block 

916 sets the range to target as Min_Front_Distance, which, as 

explained earlier, is the range to the nearest object within plus 

or minus 90 degrees of the robot’s forward direction. The 
current angle to the target defines the angle towards the target 

relative to straight ahead. However, Range_To_Target defines 

a range (i.e., distance) from the robot to an obstacle in the 

direction of the waypoint. 

After setting the Range_To_Target variable, decision block 

918 tests to see if the distance to the current waypoint is less 

than the waypoint radius defined previously. If so, the way- 

point is considered to be achieved, so operation block 920 

iterates to the next waypoint in the waypoint list, and the 

process exits. 

If decision block 918 evaluates false, a more specific test is 

performed to see if the waypoint has been achieved. In some 

instances, it may not be possible to actually place the center of 

the robot over the waypoint. For example, the waypoint may 

have been placed too close to a wall, or perhaps even behind 

the wall. However, if the robot can get close enough, it may be 

sufficient to say the waypoint has been achieved. Thus, if 

decision block 922 evaluates true, operation block 920 iter- 

ates to the next waypoint in the waypoint list, and the process 

exits. However, if decision block 922 evaluates false the pro- 

cess exits and continues on with the current waypoint. 

A representative evaluation of a test for close enough to a 

waypoint is illustrated in block 924. Of course, those of 

ordinary skill in the art will recognize that other parameters, 

distances, and decisions may be made within the scope of the 

present invention to define whether a waypoint has been 

achieved. In block 924, the first test checks to see if the 
Range_to_Target variable is less than the arm extension plus 

the larger of a forward threshold or a side threshold. If not, 

there may still be room to move forward or rotate toward the 

waypoint, so the process may exit and continue on with the 

current waypoint. Otherwise, the second test checks to see if 

the distance to the waypoint is less than the sum of the arm 

extension and the robot length. If not, there may still be room 

to move forward or rotate toward the waypoint, so the process 

may exit and continue on with the current waypoint. Other- 

wise, the third test checks to see if the distance to the closest 
object on the front side of the robot (i.e., Min-Front_Dis- 

tance) is less than the arm extension plus twice the forward 

threshold. If not, there may still be room to move forward or 

rotate toward the waypoint, so the process may exit and 

continue on with the current waypoint. Otherwise, the final 

check tests to see if the angle to the target is less than 45 

degrees or the range to the nearest obstacle is less than the turn 

threshold. If not, there may still be room to move or rotate 

toward the waypoint, so the process may exit and continue on 

with the current waypoint. Otherwise, operation block 920 

iterates to the next waypoint in the waypoint list, and the 

process exits. 

FIG. 27 is a software flow diagram illustrating components 

of an algorithm for adjusting translational velocity 930 during 

the waypoint follow behavior. First, operation block 932 tests 

to see if the distance to the next waypoint is less than one tenth 

of the robot’s length. If so, operation block 934 performs an 
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update of the robot’ s current pose to be certain that the pose is 

precise relative to the waypoint location. 

If operation block 932 evaluates false, or after the pose is 

updated, decision block 936 tests to see if the range to the 

5 closest object in front is less than twice a predefined thresh- 

old. If not, control transfers to decision block 944. However, 
if the range to the closest object in front is less than twice a 

predefined threshold, the robot may be approaching close to 

an obstacle, so decision block 938 tests to see if the robot is 
10 blocked in the direction of the target. If so, operation block 

940 performs a backup procedure and the process exits. If the 

robot is not blocked in the target direction, decision block 942 

tests to see if the angle to the target is greater than 60 degrees. 

If so, the robot may not be able to achieve the target without 

15 backing up, so operation block 940 performs a backup pro- 

cedure and the process exits. If the angle to the target is not 

greater than 60 degrees, a backup procedure may not be 

needed and control transfers to decision block 944. 

Decision block 944 tests to see if the angle to the target is 

2o greater than 45 degrees. If so, operation block 946 sets the 

translational speed to zero enabling the robot to stop making 

forward progress while it rotates to face more directly toward 

the target. After setting the speed to zero, the process exits. 

If the angle to the target is not greater than 45 degrees, new 

25 translational velocity determination continues by decision 

block 948 testing to see ifa detection behavior is in progress. 

As stated earlier when describing the obstacle avoidance 

behavior, a detection behavior may be a behavior where the 

robot is using a sensor in an attempt to find something. For 

3o example, the countermine conduct is a detectionbehavior that 

is searching for landmines. In these types of detection behav- 

iors, it may be desirable to approach much closer to objects, or 

to approach objects with a much slower speed to allow time 

for the detection function to operate. Thus, if a detection 

35 behavior is active, operation block 950 sets a desired speed 

variable based on detection parameters that may be impor- 

tant. By way of example and not limitation, in the case of the 

countermine conduct this desired speed may be set as: 

Desired_Spee�Max_pas sover_rate- (Scan-amplitude/ 

4o Scan_Speed). In this countermine conduct example, the 

Max_ passover_rate may indicate a maximum desired speed 

for passing over the landmine. This speed may be reduced by 

other factors. For example, the (Scan_amplitude/ 

Scan_Speed) term reduces the desired speed based on a factor 

45 of how fast the mine sensor sweeps an area. Thus, the Scan_ 

amplitude term defines a term of the extent of the scan sweep 

and the Scan_Speed defines the rate at which the scan hap- 

pens. For example, with a large Scan_amplitude and a small 

Scan_Speed, the Desired_Speed will be reduced significantly 

5o relative to the Max_passover_rate to generate a slow speed 

for performing the scan. While countermine conduct is used 

as an example of a detection behavior, those of ordinary skill 

in the art will recognize that embodiments of the present 

invention may include a wide variety of detection behaviors, 

55 such as, for example, radiation detection, chemical detection, 

and the like. 

If a detection behavior is not in progress, decision block 

952 tests to see ifa velocity limit is set. In some embodiments 

of the invention, it may be possible for the operator to set a 

6o velocity limit that the robot should not exceed, even if the 

robot believes it may be able to safely go faster. For example, 

if the operator is performing a detailed visual search, the robot 

may be performing autonomous navigation, while the opera- 

tor is controlling a camera. The operator may wish to keep the 

65 robot going slow to have time to perform the visual search. 

Ifa velocity limit is set, operation block 954 sets the desired 

speed variable relative to the velocity limit. The equation 
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illustrated in operation block 954 is a representative equation 

that may be used. The 0.1 term is a term used to ensure that the 

robot continues to make very slow progress, which may be 
useful to many of the robot attributes, behaviors, and conduct. 

In this equation, the Speed_Factor term is a number from one 

to ten, which may be set by other software modules, for 

example the guarded motion behavior 500 (FIG. 13), to indi- 

cate a relative speed at which the robot should proceed. Thus, 

the desired speed is set as a fractional amount of the Max_ 

Limit_Speed. 

If a velocity limit is not set, operation block 956 sets the 

desired speed variable relative to the maximum speed set for 

the robot (i.e., Max_Speed) with an equation similar to that 

for operation block 614 except Max_Speed is used rather than 

Max_Limit_Speed. 

After the Desired_Speed variable is set by operation block 

950, 954, or 956, decision block 958 determines if the dis- 
tance to the current waypoint is less than the current velocity 

plus a small safety factor. If not, operation block 968 sets the 

new translational speed for the robot to the Desired_Speed 

variable and the process exits. However, if the current way- 

point is getting close, as determined by decision block 958 

evaluating true, decision block 960 determines if the current 

waypoint is part of an arc. If so, operation block 962 sets the 

translational speed such that the robot can smoothly traverse 
the arc. Thus, operation block 962 is a representative equation 

that sets the new translational speed as a function of the larger 

of either the angle to the target, or the turn angle to the next 

waypoint. In other words, the translation velocity will be 

reduced by setting the new speed to the current speed multi- 

plied by a fractional change factor. This fractional change 

factor may be defined as the cosine of the larger of either the 

angle to the target, or the turn angle to the next waypoint. 

If the current waypoint is not part of an arc, it may still be 

desirable to slow the robot’s translational speed down in 

preparation for turning toward the next waypoint. Thus, 

operation block 964 is a representative equation for setting 

the new translational speed for the robot by multiplying the 

current speed by a different fractional change factor. This 

fractional change factor may be set as about (0.7+(0.3"COS 

(Next_Turn_Angle)). In other words, the new speed will be 

set somewhere between 70% and 100% of the current speed 

based on the angle towards the next waypoint. If the angle is 

small, for example zero degrees, there may be no need to slow 

down and the new speed can be set at 100% of the current 

speed. Conversely, if the angle is large, for example 90 

degrees, it may be desirable to slow down significantly in 

preparation for a turn to the new waypoint. Thus, the new 

translational velocity is set at 70% of the current speed. Of 

course, the next time through the global timing loop presents 

another chance to adjust the translational speed if the angle to 

the next waypoint is still large. 

This sets the translational speed based on the severity of the 
turn that will be negotiated to achieve the next waypoint. 

After setting the current speed, from operation block 968, 

964, or 962, the translational velocity 930 process ends. 

FIG. 28 is a software flow diagram illustrating components 

of an algorithm for performing rotational velocity adjust- 
ments 970 of the waypoint follow behavior. First, decision 

block 972, checks to see if waypoint following is enabled. If 
not, the process exits, because rotational velocity changes 

will be handled by another behavior, such as, for example, the 

obstacle avoidance behavior. 

Ifwaypoint following is enabled, decision block 974 tests 

to see if the robot is blocked in front. If not, rotational velocity 

determination can continue at decision block 986. However if 

the robot is blocked in front, decision block 976 determines 
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whether the current waypoint is to the left of the robot. If so, 

decision block 978 tests the area to the left of the robot where 

the robot may want to turn toward and find the range to the 

nearest object in that area. If the range is larger than a turning 
5 threshold, as tested by decision block 982, there is room to 

turn, so operation block 980 sets the rotational velocity to the 

left at 30% of a predefined maximum rotational velocity. 

After setting the rotational velocity, the process exits. 

If the waypoint is not on the left, decision block 982 tests 
10 the area to the right of the robot where the robot may want to 

turn toward and find the range to the nearest object in that 

area. If the range is larger than a turning threshold, as tested by 

decision block 982, there is room to turn, so operation block 

984 sets the rotational velocity to the right at 30% of a pre- 
15 defined maximum rotational velocity. After setting the rota- 

tional velocity, the process exits. 

If the robot is blocked in front and there is not room to turn 

(i.e., either decision block 978 or 982 evaluates false), then 
the process exits to a get unstuck behavior in an effort to find 

2o a way to get around the obstacle in front so that the robot can 

continue to pursue the current waypoint. 

If the robot is not blocked in front, decision block 986 tests 
to see if the angle to the waypoint target is less than ten 

degrees. If so, the robot is close to pointed in the correct 
25 direction and only minor corrections may be useful. Thus, in 

a representative method for determining an appropriate 

change to the rotational velocity, operation block 988 sets a 

Waypoint_Turn_Gain as the angle to the target divided by 

100. Conversely, if the waypoint target is equal to or greater 
3o than ten degrees, a larger correction to the rotational velocity 

may be appropriate to get the robot pointed toward the current 

waypoint. Thus, in a representative method for determining 

an appropriate change to the rotational velocity, operation 

block 990 sets a Waypoint Turn_Gain as the base 10 loga- 
35 rithm of the angle to the target minus one. As a result, the 

larger the angle to the waypoint target, the larger the value 

will be for the Waypoint_Turn_Gain. 

With the Waypoint_Tum_Gain set, decision block 992 

tests to see if the waypoint is on the left. If so, operation block 
40 994 sets the turn velocity to the left by multiplying the current 

turn velocity by the Waypoint_Turn_Gain, and the process 

exits. If the waypoint is not on the left, operation block 996 

sets the turn velocity to the right by multiplying the current 

turn velocity by the Waypoint_Turn_Gain, and the process 
45 exits. 

As with other behaviors, the waypoint algorithms 900,930, 

and 970, in FIGS. 26, 27, and 28, respectively operate on the 

global timing loop. Consequently, the decision of whether a 

50 
waypoint has been achieved to move on to the next waypoint, 

adjustments to the translational velocity, and adjustments to 

the rotational velocity, may be repeated on each time tick of 

the global timing loop. 

4.6. Robotic Follow Conduct 

55 One representative cognitive conduct module enabled by 
the RIK is a robotic follow capability wherein one or more 

robots are sent to a map location of the most recent change in 

the environment or directed to follow a specific moving 

object. FIG. 29 is a software flow diagram illustrating corn- 

60 ponents of an algorithm for performing the follow conduct 

1000. 

This relatively autonomous conduct may be useful for a 

fast-moving robot with perceptors that may be used by robot 

attributes and robot behaviors to detect and track changes in 

65 the environment. It would be difficult for conventional robots 
under direct operator control to avoid obstacles, track where 

the robot is going, and track the object of pursuit at the same 
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time. However, with the relatively autonomous conduct and 

collaborative tasking enabled by the RIK, a high-speed chase 

may be possible. 

The RIK may include a tracking behavior that allows the 

robot to track and follow an object specified by the operator 

with the camera or other tracking sensors, such as thermal, 

infrared, sonar, and laser. Consequently, the tracking behav- 

ior is not limited to visual tracking, but can be used with any 

tracking system including a thermal imaging system for 

tracking human heat signatures. 

In visual tracking, for example, the operator may specify an 

object to be tracked within the operator’s video display by 

selecting a pursuit button on the interface and then manipu- 

lating the camera view so that the object to be tracked is 

within a bounding box. The camera can then track the object 

based on a combination of, for example, edge detection, 

motion tracking, and color blob tracking. Furthermore, the 

camera can track the motion of the target independently from 

the motion of the robot, which allows the robot to follow the 
optimal path around obstacles, even if this path at first may 

take the robot in a direction different from a direction of the 

target. 

Thus, the robotic follow conduct 1000 effectively blends 

robot behaviors, such as, for example, tracking, obstacle 

avoidance, reactive path planning, and pursuit behaviors. To 

begin the follow conduct 1000, operation block 1010 illus- 

trates that conduct queries or receives information regarding 

the present bearing to a target. This present bearing may be 

generated by a tracking behavior, such as, for example, the 

ROCA behavior discussed above or from an updated map 

location from the operator or other robot. In addition, the 

present bearing may be converted to a robot relative coordi- 

nate system, if needed. Both the tracking behavior and follow 

conduct 1000 operate on the global timing loop. As a result, 

the follow conduct 1000 will be re-entered each timing tick 

and be able to receive an updated bearing to the target, from 

the tracking behavior or other defined location, each timing 

tick. 

Decision block 1015 tests to see if the robot has reached the 

target. If so, the follow conduct 1000 exits. If not, the follow 

conduct 1000 transitions to decision block 1020. In this rep- 

resentative embodiment, reaching a target is defined as: 1) the 

closest obstacle in a 30° region in which the tracked object 

lies is closer than the closest obstacle in a 30° region on the 

opposite side; 2) both L-front and R-front are obstructed; 3) 

the angle to which the object lies in the front region; and 4) the 

distance to the object in front is less than the distance on the 

right and left. 

Decision block 1020 tests to see if the front is blocked. If 

so, control transfers to operation block 1030 to attempt to get 

around the obstacle. If not, control transfers to decision block 
1070. The front blocked decision may be based, for example, 

on a flag from the guarded motion behavior discussed previ- 

ously. 

Decision block 1030 begins a process of attempting to get 

around a perceived obstacle. To begin this process, decision 

block 1030 checks the current speed. If the speed is not 

greater than zero, control transfers to decision block 1040. If 

the speed is greater than zero, operation block 1035 sets the 

speed to zero before continuing with decision block 1040. 

Decision block 1040 tests to see if the robot is blocked on 

the left or right. If not, control transfers to decision block 

1050. If the robot is blocked on the left or right, the robot may 

not have an area sufficient to make a turn, so operation block 

1045 sets the robot to begin backing up with an angular 
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velocity of zero and a linear velocity that is 20% of the 

presently specified maximum, then the follow conduct 1000 

exits. 

Decision block 1050 tests to see if the robot is blocked in 

5 the direction of the target. If so, control transfers to decision 

block 1060. If the robot is not blocked in the direction of the 

target, operation block 1055 sets the robot to turn toward the 

target with a linear velocity of zero and an angular velocity 

that is 60% of the presently specified maximum, then the 

10 follow conduct 1000 exits. 

Decision block 1060 tests to see if the target is positioned 

substantially in front of the target. If so, the target is in front 

of the robot, but the robot is also blocked by an obstacle. Thus, 

operation block 1062 attempts to move forward slowly but 

15 also turn around the obstacle by setting the linear velocity to 

10% of the presently specified maximum and the angular 

velocity to 60% of the presently specified maximum and 

away from the obstacle. Then, the follow conduct 1000 exits. 

If decision block 1060 evaluates false, then the direction 
2o directly in front of the robot is blocked, and the direction 

toward the target is blocked. Thus, operation block 1064 

attempts to find a clear path to the target by setting the linear 

velocity to -20% of the presently specified maximum (i.e., 

backing up) and the angular velocity to 30% of the presently 

25 specified maximum and in the direction of the target. Then, 

the follow conduct 1000 exits. 

Returning to decision block 1020, if decision block 1020 
evaluates false, then decision block 1070 begins a process of 

attempting to progress toward the target since the front is not 

3o blocked. Thus, decision block 1070 tests to see if the robot is 
blocked in the direction of the target. If so, operation block 

1075 attempts to move forward while gradually turning away 

from the target in an effort to try to find a clear path to the 

target by setting the linear velocity to 20% of the presently 

35 specified maximum and the angular velocity to 20% of the 

presently specified maximum. Then, the follow conduct 1000 

exits. 

If decision block 1070 evaluates false, then the target is not 

in front of the robot and the robot is free to move forward. 

4o Thus, operation block 1080 attempts to move forward and 

turn toward the target. In this representative embodiment, the 

robot is set with an angular velocity toward the target that is 

determined by the current bearing toward the target divided 

by a predetermined turn factor. Consequently, the speed at 
45 which the robot attempts to turn directly toward the target 

may be adjusted by the turn factor. In addition, the robot is set 

to move forward at a safe speed, which may be set as 10% of 

the maximum, to ensure the robot keeps moving, plus a safe 

speed adjustment. The safe speed adjustment may be defined 

5o as (Front-forward_threshold)/2. Wherein Front defines the 
distance to the nearest object in the vicinity of directly in front 

as defined by the range attribute discussed earlier, and for- 

ward_threshold defines a distance to which the robot may be 

relatively certain that objects are outside of its time horizon. 

55 Thus, the robot makes fast, but safe, forward progress while 

turning toward the target, and the speed may be adjusted on 

the next time tick based on new event horizon information. 

As with other robot behaviors and cognitive conduct, the 

follow conduct 1000 operates on the global timing loop. 

6o Consequently, the ROCA behavior 700 will be re-entered and 

the process repeated on the next time tick. 

4.7. Countermine Conduct 
One representative cognitive conduct module enabled by 

the RIK is a countermine process. FIGS. 30A and 30B are 

65 software flow diagrams illustrating components of a counter- 

mine conduct module. Landmines are a constant danger to 

soldiers during conflict and to civilians long after conflicts 
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cease, causing thousands of deaths and tens of thousands of 

injuries every year. Human minesweeping to find and remove 

mines is a dangerous and tedious job. Mine-detecting robots 

may be better equipped and expendable if things go wrong. 

The countermine conduct 1100 in FIGS. 30A and 30B illus- 

trates a relatively autonomous conduct that may be useful for 

finding and marking landmines based on a predetermined 

path. The predetermined path may be defined as a series of 
waypoints, or may be simply defined as a straight path 

between the robot’s present position and an end point. For 

example, the series ofwaypoints may be defined on a map to 

follow a road or to create a broad coverage of a large area. 

Those of ordinary skill in the art will recognize that FIGS. 
30A and 30B illustrate a high level decision and an action 

process. Details of many of the behaviors, such as some 

movements of manipulators and details of what comprises the 

sensing of a mine may not be described in detail. Further- 

more, FIGS. 30A and 30B and the description herein may 

express details of geometry and function related to a specific 

robot implementation for explanation purposes. Embodi- 
ments of the present invention are not intended to be limited 

to these specific implementation details. 

To begin the countermine conduct 1110, an initiate task 

1110 is performed. Generally, this initiate task 1110 may be 

performed at the beginning of a countermine sweep and 
would thus be performed once, outside of the global timing 

loop. 
The initiate task 1110 may include operation block 1112 to 

fully raise a sensing device, which may be configured for 

sensing landmines and may be positioned on a manipulator 

for placement near the ground and for generating a sweeping 

motion of the mine sensor in a region around the robot. 

Operation block 1114 calibrates the sensing device and, for 

example, corrects for background noise, if needed. Operation 

block 1116 then positions the sensing device for operation 

and defines sensing parameters. As an example, the represen- 

tative embodiment of FIG. 30A illustrates setting a sweep 

amplitude, and a sweep speed for the mine sensor. 

After the initiate task 1110, the countermine conduct 1100 
begins a fast advance process in operation block 1120 by 

setting a relatively fast speed toward the first waypoint in 

operation block 1122. The fast advance speed may depend on 

many factors, such as, for example, the motion capabilities of 

the robot, the sweeping characteristics of the manipulator, 

and the sensing characteristics of the mine sensor. Generally, 

the robot’s fast advance speed may be set relative to the sweep 

coverage of the manipulator to ensure sufficient coverage of 

the area being swept. For example, in this specific embodi- 

ment, operation block 1120 sets the robot’s speed to about 

0.35 meter/second-(SweepWidth!10). Thus, operation block 

1120 actually determines the maximum advance rate based 
on scan width and scan speed to ensure 100% coverage. After 

setting the maximum advance rate, operation block 1124, 

enables the guarded motion and obstacle avoidance. One 

result of the fast advance process, operation block 1120, is 

that the maximum advance rate serves as an upper bound of 

allowable velocities for the guarded motion and obstacle 

avoidance behaviors, as explained above. 

Once in the fast advance process of operation block 1120, 

the countermine conduct 1100 begins a process of sensing for 

mines 1130. Decision block 1132 tests to see if a signal 

processing threshold has been exceeded. This signal process- 

ing threshold may be set at a predetermined level indicating a 

potential that a mine has been sensed in the vicinity of the 

mine sensor. Obviously, this predetermined threshold may be 

a function of factors such as, for example, expected mine 

types, mine sensor characteristics, robot speed, and manipu- 
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lator speed. If the signal processing threshold is not exceeded, 

control returns to operation block 1122 to continue the fast 

advance process of operation block 1120. 

If the signal processing threshold is exceeded, the process 
5 tests to see if there is enough room at the present location to 

conduct a detailed search for the mine. Thus, decision block 

1134 tests to see if the front range parameter is larger than a 

predetermined threshold. By way of example and not limita- 

10 
tion, the threshold may be set at about one meter. If decision 

block 1134 evaluates false, indicating that there may not be 

enough room for a detailed search, control transfers to opera- 

tion block 1122 to continue the fast advance process of opera- 

tion block 1120. In this case, the process depends on the 

15 guarded motion and obstacle avoidance behaviors to navigate 

a path around the potential mine. 

If the front range parameter is larger than a predetermined 

threshold, there may be room for a detailed search and the 

process continues. Decision block 1136 tests to see if the back 
2o of the robot is blocked. If so, operation block 1138 sets the 

robot to back up a predetermined distance (for example 0.2 

meters) at a speed of, for example, 20% of a predetermined 

maximum. This movement enables the robot to perform a 

more accurate sweep by including in the scan the subsurface 
25 

area that triggered the processing threshold. If the area behind 

the robot is not clear, the process continues without backing 

up. 

Operation block 1140 performs a coverage algorithm in an 

3o attempt to substantially pinpoint the centroid of the possible 

mine location. In a representative embodiment, this coverage 

algorithm may include advancing a predetermined distance, 

for example 0.5 meters, at a relatively slow speed, and sweep- 

ing the manipulator bearing the mine sensor with a wider 
35 sweep angle and a relatively slow speed. Thus, the coverage 

algorithm generates a detailed scan map of the subsurface 

encompassing the area that would have triggered the process- 

ing threshold. The results of this detailed scan map may be 

used to define a centroid for a mine, if found. 
4o After the detailed scan from the coverage algorithm of 

operation block 1140, decision block 1152 in FIG. 30B 

begins a process to marking the mine location 1150, which 

may have been found by the coverage algorithm. Decision 

block 1152 tests to see if the centroid of a mine has been 
45 found. If not, control transfers to the end of the mine marking 

process 1150. A centroid of a mine may not be found because 

the original coarse test at decision block 1132 indicated the 

possibility of a mine, but the coverage algorithm at decision 

block 1152 could not find a mine. As a result, there is nothing 
50 to mark. 

Ifa centroid was found, decision block 1154 tests to see if 
physical marking, such as, for example, painting the location 

on the ground, is enabled. If not, operation block 1156 saves 

55 the current location of the sensed mine, then continues to the 
end of the mine marking process 1150. 

If marking is engaged, operation block 1158 saves the 

current location of the mine, for example, as a waypoint at the 

current location. Next, operation block 1160 corrects the 

6o robot’s position in preparation for marking the location. For 

example and not limitation, the robot may need to backup 

such that the distance between the centroid of the mine and 
the robot’s current position is substantially near the arm 

length of the manipulator bearing the marking device. 

65 With the robot properly positioned, operation block 1162 

moves the manipulator bearing the marking device in proper 

position for making a mark. For example of a specific robot 
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configuration, and not limitation, the manipulator may be 

positioned based on the equation: 

arm position robot pose-arctan((robotx-centroidx)/ 
roboty-centroidy)) 

5 
With the manipulator in position, operation block 1164 

marks the mine location, such as, for example, by making a 

spray paint mark. 

After completion of the mine marking process 1150, deci- 

sion block 1166 tests to see if the robot has reached the 10 

furthest waypoint in the predefined path. If so, the counter- 

mine conduct 1100 has completed its task and exits. If the 

further waypoint has not been reached, control returns to the 

fast advance process 1120 in FIG. 30A. 

5. Multi-Robot Control Interface 
Conventional robots lack significant inherent intelligence 

allowing them to operate at even the most elementary levels of 
autonomy. Accordingly, conventional robot "intelligence" 
results from a collection of programmed behaviors prevent- 
ing the robot from performing damaging and hurtful actions, 
such as refraining from getting stuck in comers or encounter- 
ing obstacles. 

While robots have great potential for engaging in situations 
without putting humans at risk, conventional robots still lack 
the ability to make autonomous decisions and therefore con- 
tinue to rely on continuous guidance by human operators who 
generally react to live video from the robot’s on-board cam- 
eras. An operator’s user interface with a robot has generally 
been limited to a real-time video link that requires a high- 
bandwidth communication channel and extensive human 
interaction and interpretation of the video information. 

Most commercial robots operate on a master/slave prin- 
ciple where a human operator controls the movement of the 
robot from a remote location in response to information from 
robot-based sensors such as video and GPS. Such an interface 
often requires more than one operator per robot to navigate 
around obstacles to achieve a goal and such an approach 
generally requires highly practiced and skilled operators to 
reliably direct the robot. Additionally, the requisite concen- 
tration needed for controlling the robot may also detract an 
operator from achieving the overall mission goals. Accord- 
ingly, even an elementary search and rescue task using a robot 
has typically required more than one operator to monitor and 
control the robot. As robots become more commonplace, 
requiring an abundance of human interaction becomes inef- 
ficient and costly, as well as error prone. Therefore, there is a 
need to provide a usable and extendable user interface 
between a user or operator and a plurality of robots. 

Embodiments of the present invention provide methods 
and apparatuses for monitoring and tasking multiple robots. 
In the following description, processes, circuits and functions 
may be shown in block diagram form in order not to obscure 
the present invention in unnecessary detail. Additionally, 
block definitions and partitioning of logic between various 
blocks is exemplary of a specific implementation. It will be 
readily apparent to one of ordinary skill in the art that the 
present invention may be practiced by numerous other parti- 
tioning solutions. For the most part, details concerning timing 
considerations, and the like, have been omitted where such 
details are not necessary to obtain a complete understanding 
of the present invention and are within the abilities of persons 
of ordinary skill in the relevant art. 

The various embodiments of the present invention are 
drawn to an interface that supports multiple levels of robot 
initiative and human intervention, which may also provide an 
increased deployment ratio of robots to operators. Addition- 
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ally, exchange of information between a robot and an operator 

may be at least partially advantageously processed prior to 

presentation to the operator, thereby allowing the operator to 

interact at a higher task level. Further improvements are also 

provided through tasking of multiple robots and decompos- 

ing high-level user tasking into specific operational behaviors 

for one or more robots. 

FIG. 31 is a block diagram of a multi-robot system includ- 

ing a multi-robot user interface, in accordance with an 

embodiment of the present invention. A multi-robot system 

3100 includes a team 3102 of robots 3104 including a plural- 

ity of robots 3104-1, 3104-N. Multi-robot system 3100 fur- 

ther includes a user interface system 3106 configured to com- 

municate with the team 3102 of robots 3104 over respective 

15 communication interfaces 3108-1, 3108-N. 
By way of example and not limitation, the user interface 

system 3106, including input devices such as a mouse 3110 or 
joystick, enables effective monitoring and tasking of the team 
3102 of robots 3104. Interaction between robots 3104 and 

2o user interface system 3106 is in accordance with a commu- 
nication methodology that allows information from the 
robots 3104 to be efficiently decomposed into essential 
abstractions that are sent over communication interfaces 
3108-1, 3108-N on a "need-to-know" basis. The user inter- 
face system 3106 parses the received messages from robots 

25 3104 and reconstitutes the information into a display that is 

meaningful to the user. 
In one embodiment of the present invention, user interface 

system 3106 further includes a user interface 3200 as illus- 
trated with respect to FIG. 32. User interface 3200 is config- 

3o ured as a "cognitive collaborative workspace" that is config- 
ured as a semantic map overlaid with iconographic 
representations, which can be added and annotated by human 
operators as well as by robots 3104. The cognitive collabo- 
rative nature of user interface 3200 includes a three-dimen- 

35 sional (3D) representation that supports a shared understand- 
lng of the task and environment. User interface 3200 provides 
an efficient means for monitoring and tasking the robots 3104 
and provides a means for shared understanding between the 
operator and the team 3102 of robots 3104. Furthermore, user 
interface 3200 may reduce human navigational error, reduce 

4o human workload, increase performance and decrease com- 

munication bandwidth when compared to a baseline teleop- 
eration using a conventional robot user interface. 

In contrast to the static interfaces generally employed for 

control of mobile robots, user interface system 3106 adapts 
45 automatically to support different modes of operator involve- 

ment. The environment representation displayed by the user 

interface 3200 is able to scale to different perspectives. Like- 

wise, the user support and tasking tools automatically con- 

figure to meet the cognitive/information needs of the operator 
5o as autonomy levels change. 

A functional aspect of the user interface 3200 is the cog- 
nitive, collaborative workspace, which is a real-time semantic 
map, constructed collaboratively by humans and machines 
that serves as the basis for a spectrum of mutual human-robot 

55 interactions including tasking, situation awareness, human- 
assisted perception and collaborative environmental "under- 
standing." The workspace represents a fusion of a wide vari- 
ety of sensing from disparate modalities and from multiple 
robots. 

Another functional aspect of the user interface 3200 is the 
6o ability to decompose high-level user tasking into specific 

robot behaviors. User interface system 3106 may include 
capabilities for several autonomous behaviors including area 
search, path planning, route following and patrol. For each of 
these waypoint-based behaviors, the user interface system 

65 3106 may include algorithms which decide how to break up 

the specified path or region into a list ofwaypoints that can be 
sent to each robot. 
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The collaborative workspace provided by the user interface 

3200 provides a scalable representation that fuses informa- 

tion from many sensors, robots and operators into a single 

coherent picture. Collaborative construction of an emerging 
map enhances each individual team robot’s understanding of 

the environment and provides a shared semantic lexicon for 

communication. 

User interface 3200 may support a variety of hardware 

configurations for both information display and control 

inputs. The user interface 3200 may be adapted to the needs of 

a single operator/single robot team as well as to multi-opera- 

tor/multiple robot teams with applications varying from 

repetitive tasks in known environments to multi agent inves- 

tigations of unknown environments. 

With reference to FIG. 31, control inputs to the robot can 

come from keyboards, mouse actions, touch screens, or joy- 

sticks. Controls based on, for example, the joystick are 

dynamically configurable. Any joystick device that the com- 

puter system will recognize can be configured to work in the 
user interface 3200. 

By way of example and not limitation, an illustrative 

embodiment of user interface 3200 is illustrated with respect 

to FIG. 32. Display of information from the robot can be made 

on one or more monitors attached to the user interface system 

3106 (FIG. 31). The user interface 3200 contains several 
windows for each robot on the team. These windows may 

include: a video window 3210, a sensor status window 3220, 
an autonomy control window 3230, a robot window 3240 and 

a dashboard window 3250. Each of these windows is main- 

tained, but not necessarily displayed, for each robot currently 

communicating with the system. As new robots announce 

themselves to the user interface system 3106, then a set of 

windows for that specific robot is added. In addition, a multi- 

robot common window also referred to herein as an emerging 

map window 3260 is displayed, which contains the emerging 

position map and is common to all robots on the team. The 

illustrative embodiment of the user interface 3200 includes a 

single display containing, for example, five windows 3210, 

3220, 3230, 3240, 3250 and a common emerging map win- 

dow 3260, as illustrated with respect to FIGS. 33-38. 

FIG. 33 illustrates a video window 3210 of user interface 

3200, in accordance with an embodiment of the present 

invention. Video window 3210 illustrates a video feed 3212 

from the robot 3104 as well as controls for pan, tilt, and zoom. 

Frame size, frame rate, and compression settings can be 

accessed from a subwindow therein and provide a means for 

the user to dynamically configure the video to support chang- 

ing operator needs. 

FIG. 34 illustrates a sensor status window 3220 of user 

interface 3200, in accordance with an embodiment of the 
present invention. Sensor status window 3220 includes status 

indicators and controls that allow the operator to monitor and 

configure the robot’s sensor suite as needed that permit the 

operator to know at all times which sensors are available, 

which sensors are suspect, and which are off-line. In addition, 

the controls allow the user to actually remove the data from 

each sensor from the processing/behavior refresh and moni- 

toring loop. For example, the operator, through monitoring 
the user interface 3200, may decide to turn off the laser range 

finder if dust in the environment is interfering with the range 

readings. 

FIG. 35 illustrates an autonomy control window 3230 of 

user interface 3200, in accordance with an embodiment of the 
present invention. Autonomy control window 3230 includes a 

plurality of selectable controls for specifying a degree of 

robot autonomy. 
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Additionally, in autonomy control window 3230, the user 

can select between different levels of robot autonomy. Mul- 

tiple levels of autonomy provide the user with an ability to 

coordinate a variety of reactive and deliberative robot behav- 
5 iors. Examples of varying levels ofantonomy include telem- 

ode, safe mode, shared mode collaborative tasking mode, and 

autonomous mode as described above with reference to 

FIGS. 10A and 10B. 

User interface 3200 permits the operator or user to switch 
10 

between all four modes of autonomy as the task constraints, 

human needs and robot capabilities change. For instance, the 

telemode can be useful to push open a door or shift a chair out 

of the way, whereas the autonomous mode is especially useful 

15 if human workload intensifies or in an area where communi- 
cations to and from the robot are sporadic. As the robot 

assumes a more active role by moving up to higher levels of 

autonomy, the operator can essentially "ride shotgun" and 

turn his or her attention to the crucial tasks at hand locating 
2o victims, hazards, dangerous materials; following suspects; 

measuring radiation and/or contaminant levels�ithout 

worrying about moment-to-moment navigation decisions or 

communications gaps. 

FIG. 36 illustrates a robot window 3240 of user interface 
25 

3200, in accordance with an embodiment of the present 

invention. Robot window 3240 pertains to movement within 

the local environment and provides indications of direction 

and speed of robot motion, obstructions, resistance to motion, 

and feedback from contact sensors. Robot window 3240 indi- 
30 

cates illustrative blockage indicators 3242 indicative of 

impeded motion in a given direction next to the iconographic 

representation of the robot wheels indicating that movement 

right and left is not possible because of an object too close to 

35 
the left side wheels. These blockage indicators 3242 allow the 

operator to understand why the robot 3104 has overridden a 

movement command. Since the visual indications can some- 

times be overlooked, a force feedback joystick may also be 

implemented to resist movement in the blocked direction. The 

4o 
joystick may vibrate if the user continues to command move- 

ment in a direction already indicated as blocked. 

FIG. 37 illustrates a dashboard window 3250 of the multi- 

robot user interface 3200, in accordance with an embodiment 
of the present invention. As illustrated, dashboard window 

45 3250 contains information about the robot’s operational sta- 

tus such as communication activity, power and feedback 

regarding the robot’s pitch and roll. When driving the robot 

directly, operators may give directional commands using the 

joystick. Dashboard window 3250 further includes a number 

50 of dials and indicators showing battery power level, speed, 
heading, pitch!roll, system health, and communications 

health. 

FIG. 38 illustrates an emerging map window 3260 of the 

multi-robot user interface 3200, in accordance with an 
55 embodiment of the present invention. As illustrated, the 

multi-robot common window or emerging map window 3260 

provides an emerging map 3262 of the environment and 

allows the operator to initiate a number of waypoint-based 

autonomous behaviors such as search region and follow path. 

6o In the emerging map window 3260, controls are also present 

that enable an operator to zoom the map in and out. Unlike 

competitive products that require transmission of live video 

images from the robot to the operator for control, the user 

interface system 3106 (FIG. 31) creates a 3D, computer- 

65 game-style representation of the real world constructed on- 

the-fly that promotes situation awareness and efficient task- 

ing. Data for the dynamic representation is gathered using 
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scanning lasers, sonar and infrared sensors that create a clear 

picture of the environment, even when the location is dark or 

obscured by smoke or dust. 

The emerging map 3262 is displayed in user interface 3200 

and illustrates not only walls and obstacles but also other 

things that are significant to the operator. The operator can 

insert items�eople, hazardous objects, etc., from a pull- 

down menu or still images captured from the robot video�o 

establish what was seen and where. In this way, the represen- 

tation is a collaborative workspace that supports virtual and 

real elements supplied by both the robot and the operator. The 

emerging map 3262 also maintains the size relationships of 

the actual environment, helping the operator to understand 

the relative position of the robot in the real world. The opera- 

tor may change the zoom, pitch and yaw of the emerging map 

3262 to get other perspectives, including a top-down view of 

the entire environment showing walls, obstacles, hallways 

and other topographical features. 
The multi-robot user interface system 3106 (FIG. 31) is 

configured to recognize when communications are received 

from a new robot and instantiates a new set of robot-centric 

control windows to allow individual tasking of that robot. 

Likewise, the user interface 3200 automatically displays and 

disseminates whatever information is relevant to the collabo- 

rative workspace (i.e., information to be shared such as vari- 

ous map entities and environmental features it may have 

discovered). 
For the human team members, the current cognitive col- 

laborative workspace, as illustrated with respect to user inter- 

face 3200, provides point-and-click user validation and 

iconographic insertion of map entities. An operator can verify 

or remove entities, which have been autonomously added and 

can add new entities. The user interface 3200 also allows the 

workspace perspective to be focused on a single robot in 

which case it will track a selected robot and transform the data 

in various interface windows to be relevant to that robot. By 

choosing to "free" the perspective, the user gains the ability to 
traverse the environment with a third-person perspective and 

monitor the task and environment as a whole. The multi-robot 
user interface 3200 may decide which windows to show/hide 

based on a level of autonomy and the choice of focus. 

FIG. 39 is a diagram of control processes within the robots 

and user interface system 3106, in accordance with an 

embodiment of the present invention. FIG. 39 illustrates mul- 

tiple robot processes 3300-1, 3300-N of robots 3104-1, 

3104-N (FIG. 31) in the field being controlled by an operator 

at user interface system 3106. The robot processes 3300-1, 

3300-N pass data about their state and the environment 

around them to an operator at user interface system 3106. The 

operator sends commands and queries to the robot processes 

3300-1, 3300-N to direct the operation of robots 3104-1, 

3104-N. 

Robot processes 3300-1, 3300-N illustrate a distillation of 

the process of taking low-level data and converting it to per- 

ceptual abstractions that are more easily grasped by an opera- 

tor. These abstractions are packaged in data packets accord- 

ing to a message protocol and then filtered for transmission to 

user interface system 3106. This protocol is composed of 

message packets that contain information on the type of data 

being passed, the robot that generated the message, the data 

itself, and control characters for the data packet. Each robot in 

the field has a unique identifier that is contained in each data 
packet it generates. All robots use the same communication 

interface 3108-1, 3108-N to the user interface system 3106. 

This abstraction and transmission method allows long dis- 

tance radio communications at a low bandwidth over a single 

channel for multiple robots, rather than requiring several 
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channels of a high bandwidth and close proximity as would be 

required for passing raw data for analysis, as in most other 

robot control systems. 

Regarding the user interface system 3106, data packets 
5 from the robots in the field enter the user interface system 

3106 and are deblocked and extracted to information usable 

by the user interface 3200 (FIG. 32). This data can go directly 

to the various windows 3210, 3220, 3230, 3240, 3250, 3260, 

or the data can go through an interface intelligence package 
10 3330, which can provide further enhancement or abstractions 

of the data that are meaningful to the operator. The various 

embodiments of the present invention contemplate at least 
two types of windows for each individual robot, display win- 

dows and control windows. Display windows show data in 
15 logical layouts and allow the operator to monitor the robot. 

The presentation of data in windows 3210, 3220, 3230, 3240, 

3250, 3260 may be partitioned into four types of windows, 

individual robot display windows (e.g., sensor status window 

3220, dashboard window 3250), individual robot control win- 
2o dows (e.g., video window 3210, robot window 3240, 

autonomy control window 3230), and map and tasking con- 

trol windows (e.g., emerging map window 3260). 

The map and tasking control windows show a more global 

25 
representation and contain all the robots together. They pro- 

vide both display of data and the control of robot function. 

The mapping and tasking control windows can also provide 

higher level control to perform specific tasks, such as area 

search, intruder detection, mine detection, and waypoint and 

3o 
path generation. In order to provide the higher level tasking, 

the map and tasking control windows rely on the interface 

intelligence package 3330. 

Control messages from the user interface system 3106 

follow a similar path to the robots as the data abstractions 

35 follow from the robots to the user interface system 3106. 
Command messages from the control windows (e.g., video 

window 3210, robot window 3240, autonomy control win- 

dow 3230) are assembled in data packets which may include 

the same structure (e.g., message type, robot to whom the 

4o packet is directed, the data itself, and the packet control 
characters) as the packets from the robots. The packets to the 

robots may be generated from the various control windows or 

the interface intelligence package 3330. The messages are 

packaged and sent through the robot interface server 3320 and 

45 sent to the robots over the communication interface 3108-1, 
3108-N and then deblocked in the robot communication layer 

3302 and acted on by the appropriate robot. 

The user interface system 3106 does not make assumptions 

on the robots’ states but utilizes acknowledgement of sent 

5o commands. For example, if the operator requests the robot to 

go to a specific point (e.g., setting a waypoint), the user 
interface system 3106 waits for the robot to send back the 

waypoint before displaying the waypoint in the various win- 

dows on user interface 3200. By enforcing an acknowledge- 

55 ment, the actual robot state is always presented, rather than an 

assumed state of the robot. However, the robot does not 

require the detection or interaction with a user interface sys- 

tem 3106 in order to preserve safety and complete a requested 

task while also protecting itself from erroneous operator 

6o maneuvers or directives. The robots may also constantly 

broadcast their states over the communication interface 

thereby allowing the user interface system 3106 to obtain 

current robot status. Since each robot is constantly broadcast- 

ing its data, and all data packets have unique robot identifiers, 

65 the appearance of new robots in the message stream automati- 

cally generates the appearance of the robot in the user inter- 

face system 3106. 
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Although this invention has been described with reference 

to particular embodiments, the invention is not limited to 

these described embodiments. Rather, the invention is limited 
only by the appended claims, which include within their 

scope all equivalent devices or methods that operate accord- 

ing to the principles of the invention as described. 

What is claimed is: 

1. A method for providing a generic robot architecture for 

robot control software, comprising: 

providing a hardware abstraction level configured for 

developing a plurality of hardware abstractions for 

defining, monitoring, and controlling a plurality of hard- 

ware modules available on a robot platform; 

providing a robot abstraction level configured for defining 

a plurality of robot attributes comprising at least one of 
the plurality of hardware abstractions; and 

providing a robot behavior level configured for defining a 

plurality of robot behaviors comprising at least one of 

the plurality of robot attributes; 

wherein: 

each robot attribute of the plurality is configured for 

substantially isolating the robot behaviors from the 

plurality of hardware abstractions; 

each hardware abstraction of the plurality is configured 

for substantially isolating the plurality of robot 
attributes from a corresponding hardware module of 

the plurality; 

at least two hardware abstractions are configured to pro- 

vide substantially similar hardware information to at 

least one of the plurality of robot attributes; and 

the at least one of the plurality of robot attributes is 

configured to combine the hardware information from 

each of the at least two hardware abstractions to form 

attribute information for the at least one of the plural- 

ity of robot attributes and can disregard the hardware 

information from one of the at least two hardware 

abstractions in forming the attribute information. 

2. The method of claim 1, wherein the at least one of the 
plurality of robot attributes disregards the hardware informa- 

tion because the hardware module corresponding to the hard- 

ware information is absent or non-functional. 

3. The method of claim 1, wherein at least two hardware 
abstractions provide substantially different hardware infor- 

mation to at least one of the plurality of robot attributes, and 

wherein the at least one of the plurality of robot attributes 

combines the different hardware information from each of the 

at least two hardware abstractions to form the attribute infor- 

mation for the at least one of the plurality of robot attributes 

when the attribute information involves a combination of the 

different hardware information. 

4. The method of claim 1, wherein the plurality of hardware 

abstractions are selected from the group consisting of 

manipulation abstractions of manipulation type devices, 

communication abstractions of communication media and 

communication protocols, locomotion abstractions of loco- 

motion hardware, and perception abstractions of perception 

type devices. 

5. The method of claim 1, wherein the plurality of robot 

attributes are selected from the group consisting of robot 

health, camera view, resistance to motion, robot position, 

robot motion, robot attitude, robot bounding shape, and 

range. 

6. The method of claim 1, wherein providing the robot 

abstraction level further comprises providing a plurality of 
environment abstractions wherein the plurality of environ- 

ment abstractions provide environment information about an 

58 
environment around the robot to an operator, to the robot 

behaviors, to another robot, or to combinations thereof. 
7. The method of claim 6, wherein the plurality of environ- 

ment abstractions are selected from the group consisting of an 

5 occupancy grid, a robot map position, an obstruction abstrac- 

tion, an environment feature abstraction, a target abstraction, 

and an entity abstraction. 

8. The method of claim 1, wherein the robot behaviors are 
selected from the group consisting of reactive behaviors and 

10 deliberative behaviors. 

9. A computer readable medium having computer execut- 

able instructions thereon, which when executed on a proces- 

sor provide a generic robot architecture, comprising: 

a hardware abstraction level configured for developing a 

15 plurality of hardware abstractions for defining, monitor- 

ing, and controlling a plurality of hardware modules 

available on a robot platform; 

a robot abstraction level configured for defining a plurality 

of robot attributes comprising at least one of the plurality 

20 of hardware abstractions; and 
providing a robot behavior level configured for defining a 

plurality of robot behaviors comprising at least one of 

the plurality of robot attributes; 

wherein: 

25 each robot attribute of the plurality is configured for 

substantially isolating the robot behaviors from the 

plurality of hardware abstractions; 

each hardware abstraction of the plurality is configured 

for substantially isolating the plurality of robot 

30 attributes from a corresponding hardware module of 

the plurality; 

at least two hardware abstractions provide substantially 

similar hardware information to at least one of the 

plurality of robot attributes; and 

35 the at least one of the plurality of robot attributes com- 

bines the hardware information from each of the at 

least two hardware abstractions to form attribute 

information for the at least one of the plurality of robot 

attributes and can disregard the hardware information 

4o from one of the at least two hardware abstractions in 

forming the attribute information. 

10. The computer readable medium of claim 9, wherein the 

at least one of the plurality of robot attributes disregards the 

hardware information because the hardware module corre- 

45 sponding to the hardware information is absent or non-func- 

tional. 

11. The computer readable medium of claim 9, wherein at 

least two hardware abstractions provide substantially differ- 

ent hardware information to at least one of the plurality of 

5o robot attributes, and wherein the at least one of the plurality of 

robot attributes combines the different hardware information 
from each of the at least two hardware abstractions to form the 

attribute information for the at least one of the plurality of 

robot attributes when the attribute information involves a 

55 combination of the different hardware information. 
12. The computer readable medium of claim 9, wherein the 

plurality of hardware abstractions are selected from the group 

consisting of manipulation abstractions of manipulation type 

devices, communication abstractions of communication 
6o media and communication protocols, locomotion abstrac- 

tions of locomotion hardware, and perception abstractions of 

perception type devices. 

13. The computer readable medium of claim 9, wherein the 

plurality of robot attributes are selected from the group con- 

65 sisting of robot health, camera view, resistance to motion, 

robot position, robot motion, robot attitude, robot bounding 

shape, and range. 
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14. The computer readable medium of claim 9, wherein the 

robot abstraction level further comprises a plurality of envi- 
ronment abstractions wherein the plurality of environment 

abstractions provide environment information about an envi- 

ronment around the robot to an operator, to the robot behav- 5 

iors, to another robot, or to combinations thereof. 
15. The computer readable medium of claim 14, wherein 

the plurality of environment abstractions are selected from 

the group consisting of an occupancy grid, a robot map posi- 

tion, an obstruction abstraction, an environment feature 10 
abstraction, a target abstraction, and an entity abstraction. 

16. The computer readable medium of claim 9, wherein the 

robot behaviors are selected from the group consisting of 

reactive behaviors and deliberative behaviors. 

17. A robot platform, comprising: 15 

at least one perceptor configured for perceiving environ- 

mental variables of interest; 

at least one locomotor configured for providing mobility to 

the robot platform; 

a system controller configured for executing a generic 2o 

robot architecture, the generic robot architecture com- 

prising: 

a hardware abstraction level configured for developing a 

plurality of hardware abstractions for defining, moni- 

toring, and controlling a plurality of hardware mod- 25 

ules available on the robot platform; 

a robot abstraction level configured for defining a plu- 

rality of robot attributes comprising at least one of the 

plurality of hardware abstractions; and 

a robot behavior level configured for defining a plurality 3o 

of robot behaviors comprising at least one of the plu- 

rality of robot attributes; 

wherein: 

each robot attribute of the plurality is configured for 

substantially isolating the robot behaviors from the 35 

plurality of hardware abstractions; 

each hardware abstraction of the plurality is config- 

ured for substantially isolating the plurality of 

robot attributes from a corresponding hardware 

module of the plurality; 4o 

at least two hardware abstractions are configured to 

provide substantially similar hardware information 

to at least one of the plurality of robot attributes; 

and 
45 

the at least one of the plurality of robot attributes is 

configured to combine the hardware information 

60 
from each of the at least two hardware abstractions 

to form attribute information for the at least one of 

the plurality of robot attributes and can disregard 

the hardware information from one of the at least 
two hardware abstractions in forming the attribute 

information. 

18. The robot platform of claim 17, wherein the at least one 

of the plurality of robot attributes disregards the hardware 

information because the hardware module corresponding to 

the hardware information is absent or non-functional. 

19. The robot platform of claim 17, wherein at least two 

hardware abstractions provide substantially different hard- 

ware information to at least one of the plurality of robot 

attributes, and wherein the at least one of the plurality of robot 

attributes combines different hardware information from 
each of the at least two hardware abstractions to form the 

attribute information for the at least one of the plurality of 

robot attributes when the attribute information involves a 

combination of the different hardware information. 

20. The robot platform of claim 17, wherein the plurality of 

hardware abstractions are selected from the group consisting 

of manipulation abstractions of manipulation type devices, 

communication abstractions of communication media and 

communication protocols, locomotion abstractions of loco- 

motion hardware, and perception abstractions of perception 

type devices. 

21. The robot platform of claim 17, wherein the plurality of 

robot attributes are selected from the group consisting of 

robot health, camera view, resistance to motion, robot posi- 

tion, robot motion, robot attitude, robot bounding shape, and 

range. 

22. The robot platform of claim 17, wherein the robot 

abstraction level further comprises a plurality of environment 

abstractions, and wherein the plurality of environment 

abstractions provide environment information about an envi- 

ronment around the robot to an operator, to the robot behav- 

iors, to another robot, or to combinations thereof. 
23. The robot platform of claim 22, wherein the plurality of 

environment abstractions are selected from the group consist- 

ing of an occupancy grid, a robot map position, an obstruction 

abstraction, and environment feature abstraction, a target 

abstraction, and an entity abstraction. 

24. The robot platform of claim 17, wherein the robot 

behaviors are selected from the group consisting of reactive 

behaviors and deliberative behaviors. 
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