
IIIII IIIIIIII III IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIIII IIII IIII IIII
US007801644B2

(12) nited States Patent
Bruemmer et al.

(10) Patent No.:
(45) Date of Patent:

S 7,801,644 B2
Sep. 21, 2010

(54)

(75)

GENERIC ROBOT ARCHITECTURE

Inventors: David J. Bruemmer, Idaho Falls, ID
(US); Douglas A. Few, Idaho Falls, ID
(US)

(73) Assignee: Battelle Energy Alliance, LLC, Idaho

Falls, ID (US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 124 days.

(21)

(22)

(65)

Appl. No.: 11/428,729

Filed: Jul. 5, 2006

Prior Publication Data

US 2008/0009968 A1 Jan. 10, 2008

(51) Int. CI.
GO5B 19/04 (2006.01)
GO5B 19/18 (2006.01)
B25J 9/10 (2006.01)

(52) U.S. CI 700/249; 700/3; 700/245;
318/568.17; 318/568.2; 901/1

(58) Field of Classification Search 700/245,
700/247, 249, 3,246; 701/23, 27, 36, 1;

318/568.2, 568.24, 568.17; 712/28; 901/1,
901/50; 706/10, 28

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,570,217 A

4,613,942 A

4,786,847 A

4,846,576 A

4,870,561 A

5,111,401 A

5,247,608 A

2/1986 Allen et al.

9/1986 Chen

11/1988 Dagger et al.

7/1989 Maruyama et al.

9/1989 Love et al.

5/1992 Everett et al.

9/1993 Flemming et al.

5,347,459 A

5,371,854 A

5,509,090 A

5,511,147 A

5,521,843 A

5,561,742 A

9/1994 Greenspan et al.
12/1994 Kramer
4/1996 Maruyama et al.
4/1996 Abdel-Malek
5/1996 Hashima et al.

10/1996 Terada et al.

(Continued)

FOREIGN PATENT DOCUMENTS

we we 00/06084 2/2000

OTHER PUBLICATIONS

Munich et al., "ERSP: A Software Platform and Architecture for the
Service Robotics Industry", IEEE Aug. 2-6, 2005, pp. 460-467.*

(Continued)

Primary Examine�Thomas G Black

Assistant Examiner�hristine M Behncke
(74) Attorney, Agent, or Firm TraskBritt

(57) ABSTRACT

The present invention provides methods, computer readable
media, and apparatuses for a generic robot architecture pro-
viding a framework that is easily portable to a variety of robot
platforms and is configured to provide hardware abstractions,
abstractions for generic robot attributes, environment
abstractions, and robot behaviors. The generic robot architec-
ture includes a hardware abstraction level and a robot abstrac-
tion level. The hardware abstraction level is configured for
developing hardware abstractions that define, monitor, and
control hardware modules available on a robot platform. The
robot abstraction level is configured for defining robot
attributes and provides a software framework for building
robot behaviors from the robot attributes. Each of the robot
attributes includes hardware information from at least one
hardware abstraction. In addition, each robot attribute is con-
figured to substantially isolate the robot behaviors from the at
least one hardware abstraction.

24 Claims, 39 Drawing Sheets

210"x�A

Hardware Abstraction Level:
object oriented, modular, reconfigurable, portable

Action Components

"�

- generic hooks for action devices, e.g., 212

manipulators, vacuum

Coms
multimodal corns

- Ethernet
- cell phone

- serial radio
- analog video

21�8
Control

m
Hooks to low-level 3 party robot

control APIs

-dave
- power
-speed
-force

- odometry

Perception ModuleslServers 218

- Inertial
- thermal - compass

- video
- tactile - IGPS

- sonar
- Laser - EMI

- panltllt unit
- GPR - IRrange

-GP$

US 7,801,644 B2
Page 2

U.S. PATENT

5,586,199 A 12/1996

5,590,062 A 12/1996

5,617,335 A 4/1997

5,675,229 A 10/1997

5,684,531 A 11/1997

5,684,695 A 11/1997

5,705,906 A 1/1998

5,838,562 A 11/1998

5,867,800 A 2/1999

5,870,494 A 2/1999

5,913,919 A 6/1999

5,936,240 A 8/1999

5,937,143 A 8/1999

5,949,683 A 9/1999

6,055,042 A 4/2000

6,061,709 A 5/2000

6,157,864 A 12/2000

6,160,371 A 12/2000

6,163,252 A 12/2000

6,167,328 A 12/2000

6,205,380 B1 3/2001

6,212,574 B1 4/2001

6,314,341 B1 11/2001

6,332,102 B1 12/2001

6,476,354 B1 11/2002

6,496,755 B2 12/2002

6,516,236 B1 2/2003

6,522,288 B1 2/2003

6,535,793 B2 3/2003

6,581,048 B1 6/2003

6,598,169 B1 7/2003

6,618,767 B1 9/2003

6,681,150 B1 1/2004

6,697,147 B2 2/2004

6,721,462 B2 4/2004

6,760,645 B2 7/2004

6,760,648 B2 * 7/2004

6,768,944 B2 7/2004

6,782,306 B2 8/2004

6,785,590 B2 8/2004

6,804,580 B1 10/2004

6,809,490 B2 10/2004

6,816,753 B2* 11/2004

6,836,701 B2 12/2004

6,845,297 B2 1/2005

6,865,429 B1 3/2005

6,883,201 B2 4/2005

6,889,118 B2 5/2005

6,917,893 B2 7/2005

6,922,632 B2 7/2005

6,925,357 B2 8/2005

6,941,543 B1 9/2005

6,974,082 B2 12/2005

7,024,278 B2 4/2006

7,069,113 B2 6/2006

7,069,124 B1 6/2006

7,085,637 B2 8/2006

7,151,848 B1 12/2006

7,162,056 B2 1/2007

7,164,971 B2 1/2007

7,170,252 B2 1/2007

7,211,980 B1 5/2007

7,236,854 B2 6/2007

7,343,232 B2 3/2008

7,429,843 B2 9/2008

7,450,127 B2 11/2008

2002/0091466 A1 7/2002

2002/0120362 A1 8/2002

2002/0137557 A1 9/2002

2003/0055654 A1 3/2003

2003/0101151 A1 5/2003

DOCUMENTS

Kanda et al.
Nagamitsu et al.
Hashima et al.
Thorne
Li et al.
Bauer
Tanabe et al.
Gudat et al.
Leif
Kanda et al.
Bauer et al.
Dudar et al.
Watanabe et al.
Akami et al.
Sarangapani
Bronte
Schwenke et al.
Tachikawa
Nishiwaki
Takaoka et al.
Bauer et al.
O’Rourke et al.
Kanayama
Nakajima et al.
Jank et al.
Wallach et al.
Brown et al.
Paradie et al.
Allard
Werbos
Warwick et al.
Slaughter et al.
Haga et al.
Ko et al.
Okabayashi et al.
Kaplan et al.
Sakamoto et al 700/245
Breed et al.
Yutkowitz
Kasuga et al.
Stoddard et al.
Jones et al.
Sakamoto et al 700/245
McKee
Allard
Schneider et al.
Jones et al.
Murray, IV et al.
Dietsch et al.
Foxlin
Wang et al.
Brown et al.
Mackey
Chiappetta et al.
Matsuoka et al.
Whittaker et al.
Breed et al.
Watanabe et al.
Burl et al.
Ferla et al.
Maeki
Bmemmer et al.
Pretlove et al.
Duggan et al.
Jones et al.
Hong et al.
Song et al.
Lathan et al.

Ishii et al.
Oudeyer
Holland

2003/0171846 A1 9/2003 Murray, IV et al.

2003/0191559 A1 10/2003 Chatsinchai et al.

2004/0019406 A1 1/2004 Wang et al.

2004/0066500 A1 4/2004 Gokturket al.

2004/0073360 A1 4/2004 Foxlin

2004/0133316 A1 7/2004 Dean

2004/0138959 A1 7/2004 Hlavac et al.

2004/0158355 A1 8/2004 Holmqvist et al.

2004/0167670 A1 8/2004 Goncalves et al.

2004/0168148 A1 8/2004 Goncalves et al.

2004/0170302 A1 9/2004 Museth et al.

2004/0175680 A1 9/2004 Hlavac et al.

2004/0189702 A1 9/2004 Hlavac et al.

2004/0193321 A1 9/2004 Anfindsen et al.

2004/0199290 A1 10/2004 Stoddardet al.

2005/0007603 A1 1/2005 Arieli et al.

2005/0021186 A1 1/2005 Murray, IV et al.

2005/0182518 A1 8/2005 Karlsson

2005/0197739 A1 9/2005 Nodaet al.

2005/0204438 A1 9/2005 Wang et al.

2005/0234592 A1 10/2005 McGee et al.

2005/0234679 A1 10/2005 Karlsson

2006/0015215 A1 1/2006 Howardet al.

2006/0031429 A1 2/2006 Ayyagari

2006/0095160 A1 5/2006 Orita et al.

2006/0117324 A1 * 6/2006 Alsafadi et al 719/320

2006/0178777 A1 8/2006 Parket al.

2007/0093940 AI* 4/2007 Ng-Thow-Hing et al 700/245

2007/0143345 A1 6/2007 Jones et al.

2007/0156286 A1 7/2007 Yamauchi

2007/0197877 A1 8/2007 Decorte et al.

2007/0198145 A1 8/2007 Norris et al.

2007/0208442 A1 9/2007 Perrone

2007/0260394 A1 11/2007 Dean

2007/0271002 A1 11/2007 Hoskinson et al.

2008/0009964 A1 1/2008 Bmemmer et al.

2008/0009965 A1 1/2008 Bmemmer et al.

2008/0009966 A1 1/2008 Bmemmer et al.

2008/0009967 A1 1/2008 Bmemmer

2008/0009969 A1 1/2008 Bmemmer et al.

2008/0009970 A1 1/2008 Bmemmer

2008/0049217 A1 2/2008 Cappelletti

2008/0071423 AI* 3/2008 Murray et al 700/250

2008/0294288 A1 11/2008 Yamauchi

2009/0043439 A1 2/2009 Barfoot et al.

OTHER PUBLICATIONS

Yamauchi, Brian, "The Wayfarer modular navigation payload for
intelligent robot infrastructure," iRobot Research Group, Burlington,
MA, May 2005, 12 pages.
Fernandez-Madrigal et al., "Adaptable Web Interfaces for Networked
Robots," University of Malaga, Spain. Aug. 2005, 6 pages.
Thmn, Learning Occupancy Grids with Forward Models, 2001,
IEEE, pp. 1676-1681, vol. 3.
Thompson, Colleen, "Robots as Team Members? Why, yes, and the
Idaho lab is finding them to be as effective as bomb-sniffing dogs,"
Innovation: America’s Journal of Technology Commercialization,
Jun.-Jul. 2007, pp. 20-21.
Bmemmer et al., "Shared Understanding for Collaborative Control,"
IEEE Transactions on Systems, Man, and Cybernetics-Part A: Sys-
tems and Humans, vol. 35, No. 4, Jul. 2005.
Bualat et al., "Developing an Autonomy Infusion Infrastructure for
Robotic Exploration," 2004 IEEE Aerospace Conference Proceed-
ings, Jun. 2004, pp. 849-860.
Fernandez-Madrigal et al., "Adaptable Web Interfaces for Networked
Robots," University of Malaga, Spain. date unknown, 6 pages.
Laschi et al., "Adaptable Semi-Autonomy in Personal Robots," IEEE
International Workshop on Robot and Human Interactive Communi-
cation, 2001, pp. 152-157.
Piaggio et al., "Etfinos-II, A Programming Environment for Distrib-
uted Multiple Robotic Systems," IEEE Mar. 1999, pp. 1-10.

US 7,801,644 B2
Page 3

Teng et al., "A HAL for Component-based Embedded Operating

Systems," IEEE Proceedings of the 29th Annual International Com-

puter Software and Applications Conference, 2005, 2 pages.

Volpe et al., "The CLARAtyArchitecture for Robotic Autonomy," Jet

Propulsion Laboratory, California Institute of Technology, Pasadena,

California, IEEE, Feb. 2001, pp. 1-121 to 1-132.

Yamauchi, Brian, "The Wayfarer modular navigation payload for

intelligent robot infrastructure," iRobot Research Group, Burlington,

MA, date unknown, 12 pages.

Yoo et al., "Introduction to Hardware Abstraction Layers for SoC,"

IEEE Proceedings of the Design, Automation and Test in Europe

conference and Exhibition, 2003, 2 pages.

Barber et al., "A Communication Protocol Supporting Dynamic

Autonomy Agreements in Multi-agent Systems," 2001, Internet, p.

1-18.

Idaho National Laboratory, Dynamic Autonomy Collaborative Cog-

nitive Workspace, 2002, Internet, p. 1-3.

Idaho National Laboratory, Dynamic Autonomy Real-Time Human-

Robot Interaction Issues, Internet, 2002.

Idaho National Laboratory, Teleoperation, 2002, Internet, p. 1-2.

Jennings et al., Cooperative Robot Localization with Vision-Based

Mapping, 1998, Internet, p. 1-7.

Baptista et al., "An experimental testbed for position and force con-

trol of robotic manipulators," 1998, IEEE, p. 222-227.

Baptista et al., "An open architecture for position and force control of

robotic manipulators," 1998, IEEE, p. 471-474, vol. 2.

Buttazzo et al., "Robot control in hard real-time environment," 1997,

IEEE, p. 152-159.

Iberall et al., "Control philosophy and simulation of a robotic hand as

a model for prosthetic hands," 1993, IEEE, p. 824-831.

Idasiak et al., "A predictive real-time software for robotic applica-

tion," 1995, IEEE, p. 3994-3999 vol. 5.

Montano et al., "Active sensing using proximity sensors for object

recognition and localization," 1991, IEEE, p. 49-54.

PCT International Search Report and Written Opinion of the Inter-

national Searching Authority for PCT/US09/36685, dated Nov. 2,

2009, 9 pages.

Bmemmer et al., "Autonomous Robot System for Sensor Character-

ization" 10th International Conference on Robotics and Remote Sys-

tems for Hazardous Environments, Mar. 1, 2004, pp. 1-6.

* cited by examiner

U.S. Patent Sep. 21, 2010 Sheet 1 0f39 US 7,801,644 B2

�oo -�

System Controller
110

Storage
Device(s)

130

Local Input ��
device(s)

135

Local output ��
device(s)

140

�
Processor(s)

120

Memo�
125

124

I L0 ca1 ’] Display �l--lb

145 J

150

Communication
device(s)

155

Perceptor(s)
165

Manipulator(s)
170

Locomotor(s)
175

FIG. 1

l Robot System
IOOA

160

Robot System
IOOB

160�//�/111
Robot Controller �/ /

18o I /.._ ..

 °fl
I/ Robot System r"

100C

FIG. 2

290/

250/

230 /

2 t 0 �/

Dynamic At;�toIlrOmy

cogmtive level:
cognitive conduct
modules

robot behavtor teweL

complex robot

behawors
irl

robot abstraction
tevef!
atomic ,robot
attributes

hardware

abstraction leveL
object o,riented�

modular,
reconfigu:abfe,

portable

Collaborative

]!

�a �ing mode

GoTo: guarded motion, obstacle
avoidance, gebunsteck, adverse &

deliberate path #Ia� waypoint
navigation

Shared mode

!
Human detection & pursuit:

occupancy change determine,
laser tracking, viral

tracking, path pDnn}ng,

obstacle avoidance

Reactive: Perception-�Based Behaviors
- Obstacle

- ViseaI Trackhlg - Get-Unstuck
Avoida rice

- Guarded Motion
- L�ser TrackJrlg - Reactive Path P ann ng

Robot Heatdl: Motion:
Environmentet

sensor status obstructed motion

corns status (bump� range,
Occupancy Grid;

computed s�attB t[L, force)
map construct

ii
A , oo II

I II I - generf¢ hook� II
For action. de�i,:�ll
I e.g. man�pulato rs,I I
I vacuum II

Safe mode

" t Exploration
Recon� aJssa�oe
(map budding)

Acceleration Simultan Tasking

I mode iToois & Methods

Leader t Follower Search & Ideal

De]ibera�ve: Nap-Based Beha�fiors

Waypoin[Navigation Occupancy

w � automatic speed Global Path Planning Change Detection

adjustment

Position:
fused local & global

- GPS
-Localization

- Dead Reckoning
- Inertial

Bounding Shape:

movement thresholds

& physical size

Generic(,At�stractJons a�e atomic elements of communications protocol

Corlb*ol

Hooks to develop �ni�d

�rbt, robot control APIs

Perception t.4odulesiSe rye rs

Range:

flJ:S O|’I O[a:�,

IR� Sonar

- :drive
- power
-�peed

- force

- odometrv

- Initial

- video
- sonar�

- pani�tt unit

- GPS

- thermal

- tactile

- Laser

- GPR

- compass

- iGPS
- Et, lI

- tRrange

i

Co, ms
multi-modal corns

-EthemeL

-cel phone

- sedal radio
- analog video

FIG. 3

"�

=.
I,,J

I,,J

=,

I,,J

.....I

U.S. Patent Sep. 21, 2010 Sheet 3 of 39 US 7,801,644 B2

Hardware Abstraction Level:
object oriented, modular, reconfigurable, portable

Action Components

- generic hooks for action devices, e.g.,
manipulators, vacuum

212

214
Coms

multimodal coms

- Ethernet
- cell phone
- serial radio
- analog video

2!6
Control

Hooks to low-level 3rd party robot
control APIs

- drive
- power
- speed
- force

- odometry

Perception Modules/Servers 218

- Inertial
- video
- sonar

- panltilt unit
-GPS

- thermal
- tactile
- Laser
- GPR

- compass
- iGPS
-EMI

- IRrange

FIG. 4

U.S. Patent Sep. 21, 2010 Sheet 4 of 39 US 7,801,644 B2

Robot Abstraction Level:
Robot attribute building blocks that

provide a membrane between behaviors and hardware abstractions

Robot Health:
sensor status
corns status

computer status

232 Position: (fused local & global) 234

- GPS
- Localization

- Dead Reckoning
- Inertial

Motion: 236
obstructed motion (bump, range, tilt, force)

Bounding Shape: 238

movement thresholds & physical size

240

Environmental Occupancy Grid:

map construct

Range:

fusion of laser, IR, Sonar

242

FIG. 5

U.S. Patent Sep. 21, 2010 Sheet 5 of 39 US 7,801,644 B2

%

U.S. Patent Sep. 21, 2010 Sheet 6 of 39 US 7,801,644 B2

n mn an

II

390 J 395

FIG. 7

U.S. Patent Sep. 21, 2010 Sheet 7 of 39 US 7,801,644 B2

Robot Behaviors

Reactive: Perception-Based Behaviors 25_�2

- Obstacle Avoidance

- Guarded Motion

- Visual Tracking I - l

- Laser Tracking

- Get-Unstuck

- Reactive Path Planning

Deliberative: Map-Based Behaviors 25�4

Waypoint Navigation
with automatic

speed adjustment
Global Path Planning

Occupancy Change
Detection

FIG. 8

U.S. Patent Sep. 21, 2010 Sheet 8 of 39 US 7,801,644 B2

Cognitive Glue:
blends & orchestrates asynchronous firings from

reactive & deliberate behaviors below

GoTo: guarded motion, obstacle avoidance, get-unstuck
reactive & deliberate path plan waypoint navigation

Human detection & pursuit: 274

occupancy change detection, laser tracking, visual tracking,
path planning, obstacle avoidance

Exploration / Reconnaissance (map building)

276

Leader / Follower

278

I

I Search & Identify

280I

FIG. 9

U.S. Patent Sep. 21, 2010 Sheet 9 of 39 US 7,801,644 B2

Autonomy Mode

Teleoperation mode 29.__33
Safe Mode 294
Shared Mode 295
Collaborative Tasking Mode 296
Autonomous Mode 297’

Defines
Task

Goals
Operator
Operator
Operator
Operator

Robot

Supervises
Direction

Operator
Operator
Operator

Robot
Robot

Motivates
Motion

Operator
Operator

Robot
Robot
Robot

Prevents
Collision

Operator
Robot
Robot
Robot
Robot

FiG. I OA

Increasing
operator

Autonomous 297

299

Increasing
robot

initiative

Radiation

RLhban /
eeOnll

/ / Retro-

Traverse

(Countermine

ions

Virtual1

Patr°l

Collaborative Tasking Mode 296

Shared Mode 295

Safe Mode

Guarded Motion

GoTo

Obstacle

Perimeter�

\
\X\\

Presence \
Human \

\\ Detec tion \

\

Resistance

/ll Teleop’:
Joystick Operation,

Sensor Status and

Power Assessment

Reactivc Path Planning

Global

Path Planning

\
\

/

"�-----� GPS Waypoint Navigation // jj

lED Seeker

290 /-

FIG. lOB

Get Unstuck
geological //

/ Pursuit //

U.S. Patent Sep. 21, 2010 Sheet 10 0f39 US 7,801,644 B2

Robot Intelligence Kernel Communication

Robot Abstraction 300

I
T

I
! i ’ I i Localized Pose

31I

Kalman Niter- 320 t’

POsition 3,33 "�

conduct/eve]

abstraction 32� ,,,,,o� �e�2;,o,,o�o,’ l
abstraction n �0 robot abstr,--�ction �eve:

......................... -----�l Communications Layer .�/ 3�o

Significance Filter 352
compares new perception to previous.
Has abstraction changed

stgnificanfly ?

Timing Modulation 354
Motors transmission of each
abstraction to optimized penodiciby.

Prioritization 356
Pr/odtizes sending of abstractions
based on critical (e.g. Send
control com�a/�d before map data)

!
Y

Bandwidth Control 358
Adapts comt77Lzt�icatio:� flow

to available bandwidth_

abstractions may undergo
these processes prior to
communication

Communicafiot�

Device
I55

[

160

"1 Communicatio�Device185 I

Multi Robot
Interface

190

FIG. 11

U.S. Patent Sep. 21, 2010 Sheet 11 0f39 US 7,801,644 B2

Robot Intelligence Kernel Abstractions
200

Sensor Data Servers

211

Soln;ar

Laser

IR Beams

Bump Se nsol’s

GPS

Wheel Encoders

Compass

Gyro

Ti�t

Brake State

Wheel Torque

Battery Voltage

Camera Pose

Video Data

Radiometer

Thermal Camera

Radiation� Sensor

Ground Penetrating
Radar

The mqol�leter Sensor

Metal Detector

Robot Abstractions
23J

Range

Movement

Attitude

Position

Local Position

Resistance to Motion

Camera View

Robot Health

Mapping aP, d
Neutralization

(map position)
231

/ 360

En vironment
Abstractions

239

Occupancy Grid

Robot Map
Position

Obstruction

Environment
Feature

FollowfTarget

Entity

Behavior"
Modulation

260

362

I
Communications 1

Layer
350

FIG. 12

U.S. Patent Sep. 21, 2010 Sheet 12 0f39 US 7,801,644 B2

Intelligence Kernel Behavior Modulation

Robot
Abstractions

23O

Range

Movement

Attitude

Localization

Resistance to
Motion

Camera View

Robot Health

Guarded Motion
Behavior

Obstacle Avoidance Behavior

II Get Unstuck
Behavior

Follow/Pursuit
Conduct

Camera Tracking
Behavior

Real-Time
Occupancy

Change
Analyzer

Virtual Rail
Conduct

Environment
Abstractions

239

Occupancy Grid

Obstruction

Environment
Feature

Follow / Target

Waypoint / Entity

Path
Planner

\

Waypoint Follow
Behavior

Waypoint / Entity
Handler

Countermine
Conduct

Area Search
Behavior

Remote Survey
Conduct

F/G. 13

U.S. Patent Sep. 21, 2010 Sheet 13 0f39 US 7,801,644 B2

Guarded Motion
Behavior

50�-.
\

Execute for each direction
of motion using resistance,
bump, and range regions

for each direction
(forward, left, right, back)

//�525

/2 �\
-.\ Slow down, move in

/
z �"-\Yes opposite direction from

// ... Bump/tactile readings ;� bump
\�---. indicate a bump?...//

T=O, V= -20%

�-� No

/,/" \\\.

/- \-\.\

530�\�/ .. -.\. �535
.’/ Resistance Limit �-.\

. / "-.\Yes I Halt motion in /" Wheel acc = 0 and
. wheel force > 0 and \

b" "\.� inertial acc. < 0.15 and /j/i"
impeded direction

-\ -\ impedance > resistance limit /
\ ./

\\\ //�
\-.\ /

///

"’/ No

FIG.

540--� /" \�-

../" Obstacle inside of event "�-.. No
horizon?

"�--\ (threshold+speedadjustment)/!-j"

�iYes
Timinq Loop {’safety qlide)

Slow down to allowable speed

newspeed = current_speed*(O.75-1oopspeedadjust)

Ioopspeed adjustment based on event loop speed

"--
�/Obstacle inside of\\.. No

<\. danger zone. /
\’--.. (range<th reshold) /j

� Yes

Stop Motion in current direction
Set motion obstruction flag

y

exit

U.S. Patent Sep. 21, 2010 Sheet 14 0f39 US 7,801,644 B2

(Start -�

exit to Waypoint Translational�

�a-bied� " \ Velocity Behavior /
602J � J

socked �Yes
in front

604�
No

Obstacle Avoidance Behavior
Translational Velocity

�600

�606

Speed = 0

Yes[

behavior in �

No

�610

Set Desired_Speed based on
detection parameters

�Yes
Is Velocity limit

61�et
�No �616

Desired_Speed = 0.1 +
(lO*(Speed_Factor/(Max_Speed))

�614

Desired_Speed = 0.1 +
(Max_LimitSpeed *
(Speed_Factor/1 O)

anything within� Yes

618� Ho�

�No �622 �620

Speed = Desired_Speed
Speed = 0.1 + (min_frontrange-

Forward_threshold)

÷
�R
� Exit to Obstacle Avoidance

otational Velocity Behaviour

FIG. 15

U.S. Patent Sep. 21, 2010 Sheet 15 0f39 US 7,801,644 B2

Obstacle Avoidance Behavior
Rotational Velocity

/- �) /�--650
, Start . j..

// Waypoint "\.. Yes // �Yes .� Blocked in �Yes /.Exit to Waypoin[�,\
following � Abs(Angle to target) � Waypomt � Rotational Velocity�

�%-�enabled?/// � >6-0? �;� �\�Direction?/// �\.. Behavior //
652�J �\ // 654�/ � � 656--/ �-� // �

.// �\Yes �../ Blocked �Yes
. Turn Right = 0.2 + �" Blocked in front? �

" � on left? // (0.5 Abs(Turn_Left - Turn_Right)

/ Blocked -.Yes Turn Left = 0.2 +
�on right?// (0.5*Abs(Turn_Left - Turn_Right)

664�j �¢/

\ 668� j -\. /--670

//’� "�\ .//Closest ran g e�-�Yes
[

"
/ \-. � ¯ Turn Right = 30% of Max / \ , /

f.. \ � on Left Side? /
/� ivim_rronLKange > �\ \� //

</� (Front Threshold*2)AND ��Yes �\ /� /�672
-. .- -- ,‘4o

[
"

�lP
-\ Min_Narrow_Front > ..-/>�

��(Robot_length*2) ?/// / ¯ Turn Left = 30% of Max

\ Yes /" �- Yes No � �/ Turn_Left > .\fes
Turn Left = 0.5"

?/
\�u _ �

Abs(Zurn_Left- Turn_Right) \ Turning eft /�\

�=_rn_thresh.2�
676�/ \. // J \� 678�

4

’"
No

"\�-/�No

. \

!/Turn_Right ��Yes
Turn Right = 0.5 *

¯
.� (Turn thresh.2) ./� Abs(Turn_Left-

Turn_Right)
6 82--�/\�.� ./-J

\lZ No
q

r

.-/Anything within "�\ Yes � .//(�10 sest range

�-£vent Horizon?//" -\ on Left Side? /

690-J

"i�
�\’1

No 692�"
!No

f -,

(, Exit

FIG. 16

Turn_Right = ((1.0 +
Arm Extension +

(1.75*Abs(Current Velocity)))
- Min_Front_Range)!4

Turn_Left = ((1.0 +
Arm Extension +

(1.75*Abs(Current_Velocity)))
-Min Front Range)!4

�--694

/�696

,f

I

’T

Exit

U.S. Patent Sep. 21, 2010 Sheet 16 0f39 US 7,801,644 B2

Start

7�a thi b IfrCknt da � de(.1 � o t h/� Yes

720�J
J Is forward motion’s Yes

stand turning motion �/

\-�bstructe�

ox Canyon?

"�No
(Exit to Obstacle avoidance

FIG. 17

Get-Unstuck
Behavior
�700 A/

�740

Backout Behavior
backup while following contours of the
obstacles on the rear sides of the robot

��\�750
No sufficient space’s

iYes /�760

Turn Till Head is Clear Behavior
rotate toward open space while avoiding

obstacles on front sides

�770

N°� Head clear? �

�780
No

� Fgress Route
ound? �/

exit to Obstacle avoidance

U.S. Patent Sep. 21, 2010 Sheet 17 0f39 US 7,801,644 B2

Start

/--880

Update Position
Abstraction

81� /z.�" ��
// Usng laser AND \’�

z/ valid laser data AND �.. No

"\... occ. grid available AND //z
\-.. ROCAenabled?/�

/

. z Yes

LASER SCAN
obtain a raw laser scan

calculate world coord, of each raw laser return

convert raw laser return from world coord, to occ. grid

"-.. Yes //

< Laser Occ_Grid_Cell =
�\Existing Occ Cell?//�

�No

/ Is Cell part �Yes
of an existing change

�occurrence/
84� � /No

/�844

Increment change

occurrence counter

848 � ;�1

Record change occurrences
and change clusters

ROCA Behavior
,.---800

�842

Cluster change
occurrence with
adjacent cells

exit)

.--890

Provide Change vector to other modules
(e.g. user interface, tracking behavior)

V
exit ") FIG. 18

No / Change � Yes
� Occurrence Counters

�< threshold?//

U.S. Patent Sep. 21, 2010 Sheet 18 of 39 US 7,801,644 B2

�/12102

2106

FIG. 19

U.S. Patent Sep. 21, 2010 Sheet 19 0f39 US 7,801,644 B2

....... [

:2i24

FIG. 20

U.S. Patent Sep. 21, 2010 Sheet 20 0f39 US 7,801,644 B2

2200
INPUT
VELOCITIES

2202
DRA WING FILE
(E.G., .DXF)

2204
PATH PLAN PROCESS

2208
ASSIGN
VELOCITIES/
REORDER

2210
VERIFY/
COMPARE
CAPABILITIES

2212
GENERA TE
WA YPOINTS

2206
WA YPOINT FIL E

2214
VELOCITIES

FIG. 21

U.S. Patent Sep. 21, 2010 Sheet 21 of 39 US 7,801,644 B2

FIG. 22

U.S. Patent Sep. 21, 2010 Sheet 22 of 39 US 7,801,644 B2

2202
DRA WING
FILE

2206
WA YPOINT FILE

ET. 00:01:18

I. 2.00,-2.00,1.00,0

2. 13.00,-2.00,1.00,0

3. 2.00,-11.00,1.50,0

4. 13.00,-11.00,0.50,0

5. 2.00,-19.00,1.00,0

6. 13.00,-19.00,0.50,0

�2402

4�2404

4�.-2406

,=_--� 2408

÷_�2410

�2412

4�2414

FIG. 23

U.S. Patent Sep. 21, 2010 Sheet 23 of 39 US 7,801,644 B2

Localizat�n
Process

2302

Waypoint
File

2304

l
Waypoint

Navigation
Process

2306

I

To
Actuators

T
Robot
Motion

Process
2308

Sensor
Process

2310

T
From

Sensors

FIG. 24

U.S. Patent Sep. 21, 2010 Sheet 24 0f39 US 7,801,644 B2

2510
CAD DRAWING

2520
CONVERT TO DXF

2530
IMPORT TO PATH PLAN PROCESS

2540
ASSIGN START/END/ORDER

2550
VERIFY CONTINUITY

2560
ASSIGN VELOCITIES

2570
CHECK/REPOR T INCONSISTENCIES

2580
GENERA TE WA YPOINT FILE

2590
SEND WA YPOINT FILE TO ROBOT

2600
EXECUTE FIRST WA YPOINT

2610
TURN TO FACE SECOND WA YPOINT

FIG. 25

U.S. Patent Sep. 21, 2010 Sheet 25 0f39 US 7,801,644 B2

/--914

Range_to_target =
Closest range within +I- t5

degrees of Angle_to_target

.. �:77.� �---922

Wavr)oint is close enou(lh when. all of the
foliowina are true ,: ./Close enough �es

<"� Waypoint is //>
?

t) Range To Target ,< Arm_Extension ÷ �--�..achieved .’/./
rr�x(Fo R*� oral_Threshold Side_Threshold)

--,. �NN0

2) Distance To Waypoint < Arm Extension + 1
RoboLLeng�

3) Min Front Distance < I
Ar)�- Extension+{Forward Threshold*2) / : �

4) Abs(A�lgie To Target)<45 OR [Exit !

\,,,.(Range To Target<(Tum Threshold’2) CC3. I/

,, /-g2o

)t Iterate to nextWaypoint J

FIG. 26

U.S. Patent Sep. 21, 2010 Sheet 26 0f39 US 7,801,644 B2

Start Waypoint Following Behavior
Translational Velocity

/�-934
�--930

Update Pose
Transform

Yes

No

, f--940

Backup

Yes
to Target >

/�-g46

I� Speed = 0
/

/

96a-�

Speed = Desired_Speed

No

� behaviorin

Fg50

Set Desired Speed based on detection
parameters

F954

Desired_Speed = 0.1 + (Speed_Factor/ I ..
3

(Max_LimitSpeed*lO)) j-

Desired Speed = 0.1 +

(Speed_Factor/(Max_Speed* 10))

No95
Yes g60�>�� Yes

°j�istance to waypoint �wa’ point "a���

� � � No /-964
Speed = Current_Speed * (0.7 +
(0.3 * COS(NextTurn_angle)))

q

Exit -’�

/-962

Speed = Current_Speed *

COS(max(Angle_To_Target,
Next_Turn_angle))

<1

FIG. 27

U.S. Patent Sep. 21, 2010 Sheet 27 0f39 US 7,801,644 B2

Start

Waypoint Following Behavior
Rotational Velocity

970

Yes

No

No

to Get Unstuck�
Behavior //

]
Turn Left 30% of/

F Max

�984

� Turn Right 30% �of Max

Yes
� Abs(Angle_to_target)�

986�� 10�

"�No F990

Waypoint_Turn_Gain =
LOG10(Angle_to_target)- 1.0

i-gss
WaypoinLTurn_Gain =
Ang e_to_target / 100

]

Waypoint Yes

� onLeft?�
992--� �No

f 996

Tum Let� with
Waypoint_Turn_Gain

1
Turn Right with

Waypoint_Turn_Gain

�994

FIG. 28

U.S. Patent Sep. 21, 2010 Sheet 28 of 39 US 7,801,644 B2

Start

Fiol0
Receive target bearing (t_bearing) relative

to robot
(based on info from tracking behavior)

Follow Conduct
1000

-�
To reach taraet, the followina are

true
1) Closest obstacle in 30° region in

which the tracked object lies is
closer than the closest obstacle
in 30Cregion on the opposite side

2) Both L-front and R-front are
obstructed

3) Angle to object lies in the front
region

4) Distance to object in front is less
than distance on right and left

\ J

No

Reached target?

No

(based on guarded
motion input)

End

No

Yes
�1o35

Set V = 0

Yes
direction of

"i ,ooo Turn towards target
T=abs(tbearing/tum factor)

V=10% + (Front- forward thresholdy2

1
Use guarded motion

behavior to limit
maximum velocity if

needed

�1o75
Tum away�om

tarot
T=20%,V=20%

Yes

Backup

T=0, V= -20%

1050-�

� direction of � �1055

""�rge�/ I Turn to target �

"�/Yes I T=60%,V=0 I"

Yes

FIG. 29

U.S. Patent Sep. 21, 2010 Sheet 29 0f39 US 7,801,644 B2

1112---\t

1114-�..,..1

11 t6�-..,

Initiate task ! ! 10

Fully Raise Sensing device }
]

Calibrate sensing device and correct for
background noise

Engage Scanning !

Sweep_Amplitude = +/-18 deg (SvveepWidth/ArmLength)
Sweep_Speed=2 deglsec

/"�"
Fast Advance 1 t20

1122--\I
Set fast’i’ speed

/ RobotSpeed = 0.35 misec- (SweepWidth/lO)

1 t24--,,,J Apply guarded motion

/ Apply obstacle avoidance

Countermine
Conduct

./.---�- 1 t00
adjust

\

Sense Mine 1 t30

I f 40--,\

/�---1138

Reverse 0.2 meters!
V=20% of max /

/

Coverage Algorithm
Advance 0.5 meters slowly

V = Current Speed - 0.1
SweepWidth = sweepWidth + 0.5

FIG. 30A

U.S. Patent Sep. 21, 2010 Sheet 30 0f39 US 7,801,644 B2

\ ?

Mark Mine 1150

Countermine
Conduct

(continued)
1100

1158�

116�

1162�

1164�

1152�
� No

centroid foe nd?�

s

1154�

Marking -
� Yes

Create waypoint at current location + 0.1 m
offset forward

j�1156

Save
centroid

location

Reverse until distance between centroid
and robot position > arm length

Manipulate marker to position

Mark mine location

No

FIG. 30B

U.S. Patent Sep. 21, 2010 Sheet 31 of 39 US 7,801,644 B2

3102
f3100

Team A

3104-1
3104-N

\
3108-1 3108-N

3106

3110

FIG. 31

U.S. Patent Sep. 21, 2010 Sheet 32 of 39 US 7,801,644 B2

3200

3210
VIDEOWINDOW

3250
DASHBOARD Wl N DOW

3260
EMERGING MAP WINDOW

3220
SENSOR STATUS WINIDOW

I lll
3240
ROBOT WINDOW

’3230
AUTONOMY
CONTROL
WI N DOW

FIG. 32

U.S. Patent Sep. 21, 2010 Sheet 33 of 39 US 7,801,644 B2

FIG. 33

U.S. Patent Sep. 21, 2010 Sheet 34 of 39 US 7,801,644 B2

-- �

U.S. Patent Sep. 21, 2010 Sheet 35 of 39 US 7,801,644 B2

FIG. 35

U.S. Patent Sep. 21, 2010 Sheet 36 of 39 US 7,801,644 B2

f 3240

ATRVMini

F, le s is!:ance Lira it: LOW Velo ci� Limit

\

Motion �\ /°

"-..,..//

FIG. 36

U.S. Patent Sep. 21, 2010 Sheet 37 of 39 US 7,801,644 B2

..... I

U.S. Patent Sep. 21, 2010 Sheet 38 0f39 US 7,801,644 B2

$3260

3262
Save Map

Go To

Create Path

Search
............... R.egi_On

Patrol

Retro -
Traverse

Scroll Map

FIG. 38

U.S. Patent Sep. 21, 2010 Sheet 39 0f39 US 7,801,644 B2

Low-Level Platform
Controls Payload’s �sor C controls

Ir�t ellig�c e Camel
I

Perceptual Abstractions
IEtc.

IMovemmt
Positions

occupancy
Gn�

"� $Jg�zc &no e Filter /;
"’x Tilters /

""�x. Priority Fflte: /

-�(

B bandwidth Filter
/

/

I
Commutations Lay� �-- 3302

J
J

h 33�

�.33,

z

¯ " I to Robot

1

�-N

3106

USER

INTERFACE

SYSTEM

3220 3250

SENSOR DASH-

STATUS BOARD

WINDOW WINDOW

......_..3108-1,

3108-N
r

3320

ROBOT
,11

INTERFACE

S ER VER

f

3210 3240
VIDEO ROBOT

WINDO W WINDOW

3330

INTERFACE

INTELLIGENCE

PACKAGE

3230

AUTONOMY

CONTROL

WINDOW

3260

EMERGING

MAP

WINDO W

ROBOT DISPLA Y MUL TI-ROBOT

WINDOWS ROBOT CONTROL WINDOWS COMMON WINDOW

FIG. 39

US 7,801,644 B2

1 2
GENERIC ROBOT ARCHITECTURE portable to a variety of robot platforms and is configured to

control a robot at a variety of interaction levels and across a
CONTRACTUAL ORIGIN OF THE INVENTION diverse range of robot behaviors.

This invention was made with government support under 5

Contract No. DE-AC07-05-ID14517 awarded by the United

States Department of Energy. The government has certain

rights in the invention.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to robotics and,

more specifically, to software architectures for realizing an

intelligence kernel for robots.

2. State of the Art

Historically, robot behaviors have been created for specific

tasks and applications. These behaviors have generally been

reinvented time and again for different robots and different

applications. There has been no sustained attempt to provide

a kernel of basic robot competence and decision making that

can be used to bootstrap development across many different

applications.

Some architectures have been proposed that provide a

generic application programming interface (API) for query-

ing various sensors and commanding various actuators; how-

ever, many of these architectures have been limited to raw

inputs and outputs rather than provide the intelligence and

behavior to a robot. As a result, the behavior functionality
created for one robot may not be easily ported to new robots.

Other architectures have been proposed to allow limited

behaviors to port across different robot platforms, but these

have generally been limited to specific low-level control sys-

tems.

The problem with robots today is that they are not very

bright. Current robot "intelligence" is really just a grab-bag of

programmed behaviors to keep mobile robots from doing

stupid things, like getting stuck in comers or running into
obstacles. The promise of wireless robots is that they can be

sent into remote situations that are too difficult or dangerous

for humans. The reality is that today’s robots generally lack

the ability to make any decisions on their own and rely on

continuous guidance by human operators watching live video

from on-board cameras.

Most commercial robots operate on a master/slave prin-

ciple. A human operator completely controls the movement

of the robot from a remote location using robot-based sensors

such as video and Global Positioning System (GPS). This
setup often requires more than one operator per robot to

navigate around obstacles and achieve a goal. As a result, very
skilled operators may be necessary to reliably direct the robot.

Furthermore, the intense concentration needed for control-
ling the robot can detract from achieving mission goals.

Although it has been recognized that there is a need for

adjustable autonomy, robot architectures currently do not

exist that provide a foundation of autonomy levels upon

which to build intelligent robotic capabilities. Furthermore,

robot architectures do not currently exist that provide a foun-

dation of generic robot attributes for porting to a variety of

robot platforms.

Therefore, there is a need for a generic scalable robot

architecture that provides a framework that is easily portable

to a variety of robot platforms and is configured to not only

provide hardware abstractions but also provide abstractions

for generic robot attributes and robot behaviors.

In addition, there is a need for a robot intelligence kernel

that provides a framework of dynamic autonomy that is easily

BRIEF SUMMARY OF THE INVENTION

The present invention provides methods, computer read-

able media, and apparatuses for a generic robot architecture

10 that provides a framework that is easily portable to a variety of

robot platforms and is configured to not only provide hard-

ware abstractions but also provide abstractions for generic

robot attributes, environment abstractions, and robot behav-

iors.
15

An embodiment of the present invention comprises a

method for providing a generic robot architecture for robot

control software. The method includes providing a hardware

abstraction level and providing a robot abstraction level. The

2o hardware abstraction level is configured for developing a

plurality of hardware abstractions that define, monitor, and

control a plurality of hardware modules available on a robot

platform. The robot abstraction level is configured for defin-

25
ing a plurality of robot attributes and provides a software

framework for building robot behaviors from the plurality of

robot attributes. Each of the robot attributes includes hard-

ware information from at least one of the plurality of hard-

ware abstractions. In addition, each robot attribute is config-

3o ured to substantially isolate the robot behaviors from the
plurality of hardware abstractions.

Another embodiment of the present invention comprises a

computer readable medium having computer executable

instructions thereon, which when executed on a processor

35 provide a generic robot architecture. The generic robot archi-

tecture includes a hardware abstraction level and a robot

abstraction level. The hardware abstraction level is config-

ured for developing a plurality of hardware abstractions that

define, monitor, and control a plurality of hardware modules
40

available on a robot platform. The robot abstraction level is

configured for defining a plurality of robot attributes and

provides a software framework for building robot behaviors

from the plurality of robot attributes. Each of the robot

45 attributes includes hardware information from at least one of
the plurality of hardware abstractions. In addition, each robot

attribute is configured to substantially isolate the robot behav-

iors from the plurality of hardware abstractions.

Another embodiment of the present invention comprises a
50 robot platform including at least one perceptor configured for

perceiving environmental variables of interest, at least one

locomotor configured for providing mobility to the robot

platform, and a system controller configured for executing a

generic robot architecture. The generic robot architecture
55 includes a hardware abstraction level and a robot abstraction

level. The hardware abstraction level is configured for devel-

oping a plurality of hardware abstractions that define, moni-

tor, and control a plurality of hardware modules available on

60 the robot platform. The robot abstraction level is configured

for defining a plurality of robot attributes and provides a

software framework for building robot behaviors from the

plurality of robot attributes. Each of the robot attributes

includes hardware information from at least one of the plu-

65 rality of hardware abstractions. In addition, each robot
attribute is configured to substantially isolate the robot behav-

iors from the plurality of hardware abstractions.

US 7,801,644 B2
3

BRIEF DESCRIPTION OF THE DRAWINGS

In the &awings, which illustrate what is currently consid-

ered to be the best mode for carrying out the invention:
FIG. 1 illustrates a representative robot platform embodi-

ment of the present invention;

FIG. 2 illustrates a representative robot control environ-

ment including a plurality of robot platforms and a robot

controller;
FIG. 3 is a software architecture diagram illustrating sig-

nificant components of embodiments of the present inven-

tion;
FIG. 4 illustrates representative hardware abstractions of

hardware modules that may be available on robot platforms;

FIG. 5 illustrates a robot abstraction level including robot
attributes that may be available on robot platforms;

FIG. 6 illustrates a representative embodiment of how a

range abstraction may be organized;

FIG. 7 illustrates an occupancy grid map that may be devel-

oped by embodiments of the present invention;

FIG. 8 illustrates representative robot behavioral compo-

nents that may be available on robot platforms;

FIG. 9 illustrates representative cognitive conduct compo-

nents that may be available on robot platforms;

FIG. 10A illustrates how tasks may be allocated between

an operator and a robot according to embodiments of the

present invention;

FIG. 10B illustrates various cognitive conduct, robot

behaviors, robot attributes, and hardware abstractions that
may be available at different levels of robot autonomy;

FIG. 11 illustrates a portion of representative processing

that may occur in developing robot attributes and communi-

cating those attributes;

FIG. 12 illustrates a representative example of communi-

cation paths between various hardware abstractions, robot

abstractions, and environment abstractions;
FIG. 13 illustrates a representative example of communi-

cation paths between robot abstractions, environment

abstractions, robot behaviors, and robot conduct;
FIG. 14 is a software flow diagram illustrating components

of an algorithm for performing a guarded motion behavior;
FIG. 15 is a software flow diagram illustrating components

of an algorithm for performing translational portions of an

obstacle avoidance behavior;
FIG. 16 is a software flow diagram illustrating components

of an algorithm for performing rotational portions of the

obstacle avoidance behavior;
FIG. 17 is a software flow diagram illustrating components

of an algorithm for performing a get unstuck behavior;

FIG. 18 is a software flow diagram illustrating components

of an algorithm for performing a real-time occupancy change

analysis behavior;

FIG. 19 is a block diagram of a robot system for imple-

menting a virtual track for a robot, in accordance with an

embodiment of the present invention;

FIG. 20 illustrates a user interface for designating a desired

path representative of a virtual track for a robot, in accordance

with an embodiment of the present invention;

FIG. 21 is a process diagram for configuring a desired path

into a waypoint file for execution by a robot, in accordance

with an embodiment of the present invention;

FIG. 22 illustrates a user interface for further processing

the desired path into a program for execution by a robot, in

accordance with an embodiment of the present invention;

FIG. 23 is a diagram illustrating transformation from a

drawing file to a program or waypoint file, in accordance with

an embodiment of the present invention;

4
FIG. 24 is a process diagram of a control process of a robot,

in accordance with an embodiment of the present invention;

FIG. 25 is a flowchart of a method for implementing a

virtual track for a robot, in accordance with an embodiment of
5 the present invention;

FIG. 26 is a software flow diagram illustrating components

of an algorithm for handling a waypoint follow behavior:

FIG. 27 is a software flow diagram illustrating components

of an algorithm for performing translational portions of the
10 waypoint follow behavior;

FIG. 28 is a software flow diagram illustrating components

of an algorithm for performing rotational portions of the

waypoint follow behavior;

FIG. 29 is a software flow diagram illustrating components
15 of an algorithm for performing a follow conduct;

FIGS. 30A and 30B are a software flow diagram illustrat-

ing components of an algorithm for performing a counter-

mine conduct;

FIG. 31 is a block diagram of a robot system, in accordance
2o with an embodiment of the present invention;

FIG. 32 illustrates a multi-robot user interface for operator

interaction, in accordance with an embodiment of the present

invention;

FIG. 33 illustrates a video window of the multi-robot user
25

interface, in accordance with an embodiment of the present

invention;

FIG. 34 illustrates a sensor status window of the multi-

robot user interface, in accordance with an embodiment of the

30 present invention;
FIG. 35 illustrates an autonomy control window of the

multi-robot user interface, in accordance with an embodiment
of the present invention;

FIG. 36 illustrates a robot window of the multi-robot user

35
interface, in accordance with an embodiment of the present

invention;

FIG. 37 illustrates a dashboard window of the multi-robot

user interface, in accordance with an embodiment of the
present invention;

4o FIG. 38 illustrates an emerging map window of the multi-
robot user interface, in accordance with an embodiment of the
present invention; and

FIG. 39 illustrates control processes within the robots and

user interface system, in accordance with an embodiment of

45 the present invention.

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides methods and apparatuses
5o for a robot intelligence kernel that provides a framework of

dynamic autonomy that is easily portable to a variety of robot
platforms and is configured to control a robot at a variety of
interaction levels and across a diverse range of robot behav-
iors.

55 In the following description, circuits and functions may be
shown in block diagram form in order not to obscure the
present invention in unnecessary detail. Conversely, specific
circuit implementations shown and described are exemplary
only and should not be construed as the only way to imple-

6o ment the present invention unless specified otherwise herein.
Additionally, block definitions and partitioning of logic
between various blocks is exemplary of a specific implemen-
tation. It will be readily apparent to one of ordinary skill in the
art that the present invention may be practiced by numerous

65 other partitioning solutions. For the most part, details con-
cerning timing considerations, and the like, have been omit-
ted where such details are not necessary to obtain a complete

US 7,801,644 B2
5

understanding of the present invention and are within the

abilities of persons of ordinary skill in the relevant art.

In this description, some drawings may illustrate signals as

a single signal for clarity of presentation and description. It
will be understood by a person of ordinary skill in the art that

the signal may represent a bus of signals, wherein the bus may

have a variety of bit widths and the present invention may be

implemented on any number of data signals including a single

data signal.

Furthermore, in this description of the invention, reference

is made to the accompanying drawings which form a part

hereof, and in which is shown, by way of illustration, specific

embodiments in which the invention may be practiced. The

embodiments are intended to describe aspects of the inven-

tion in sufficient detail to enable those skilled in the art to

practice the invention. Other embodiments may be utilized

and changes may be made without departing from the scope

of the present invention. The following detailed description is

not to be taken in a limiting sense, and the scope of the present

invention is defined only by the appended claims.

Headings are included herein to aid in locating certain

sections of detailed description. These headings should not be

considered to limit the scope of the concepts described under

any specific heading. Furthermore, concepts described in any

specific heading are generally applicable in other sections

throughout the entire specification.

1. Hardware Environment

FIG. 1 illustrates a representative robot platform 100

(which may also be referred to herein as a robot system)

including the present invention. A robot platform 100 may

include a system controller 110 including a system bus 150

for operable coupling to one or more communication devices

155 operably coupled to one or more communication chan-

nels 160, one or more perceptors 165, one or more manipu-

lators 170, and one or more locomotors 175.
The system controller 110 may include a processor 120

operably coupled to other system devices by internal buses

(122, 124). By way of example and not limitation, the pro-

cessor 120 may be coupled to a memory 125 through a
memory bus 122. The system controller 110 may also include

an internal bus 124 for coupling the processor 120 to various

other devices, such as storage devices 130, local input devices

135, local output devices 140, and local displays 145.

Local output devices 140 may be devices such as speakers,

status lights, and the like. Local input devices 135 may be

devices such as keyboards, mice, joysticks, switches, and the

like.

Local displays 145 may be as simple as light-emitting

diodes indicating status of functions of interest on the robot

platform 100, or may be as complex as a high resolution

display terminal.

The communication channels 160 may be adaptable to
both wired and wireless communication, as well as support-

ing various communication protocols. By way of example

and not limitation, the communication channels may be con-

figured as a serial or parallel communication channel, such as,

for example, USB, IEEE-1394, 802.11a/b/g, cellular tele-

phone, and other wired and wireless communication proto-

cols.

The perceptors 165 may include inertial sensors, thermal

sensors, tactile sensors, compasses, range sensors, sonar per-

ceptors, Global Positioning System (GPS), Ground Penetrat-

ing Radar (GPR), lasers for object detection and range sens-

ing, imaging devices, and the like. Furthermore, those of

ordinary skill in the art will understand that many of these

sensors may include a generator and a sensor to combine

6
sensor inputs into meaningful, actionable perceptions. For

example, sonar perceptors and GPR may generate sound

waves or sub-sonic waves and sense reflected waves. Simi-

larly, perceptors including lasers may include sensors config-
5 ured for detecting reflected waves from the lasers for deter-

mining interruptions or phase shifts in the laser beam.

Imaging devices may be any suitable device for capturing

images, such as, for example, an infrared imager, a video

10
camera, a still camera, a digital camera, a Complementary

Metal Oxide Semiconductor (CMOS) imaging device, a

charge-coupled device (CCD) imager, and the like. In addi-

tion, the imaging device may include optical devices for

modifying the image to be captured, such as, for example,

15 lenses, collimators, filters, and mirrors. For adjusting the
direction at which the imaging device is oriented, a robot

platform 100 may also include pan and tilt mechanisms

coupled to the imaging device. Furthermore, a robot platform

100 may include a single imaging device or multiple imaging

20 devices.

The manipulators 170 may include vacuum devices, mag-

netic pickup devices, arm manipulators, scoops, grippers,

camera pan and tilt manipulators, and the like.

The locomotors 175 may include one or more wheels,
25 tracks, legs, rollers, propellers, and the like. For providing the

locomotive power and steering capabilities, the locomotors

175 may be driven by motors, actuators, levers, relays and the

like. Furthermore, perceptors 165 may be configured in con-

junction with the locomotors 175, such as, for example,
3o odometers and pedometers.

FIG. 2 illustrates a representative robot control environ-

ment including a plurality of robot platforms (100A, 100B,

and 100C) and a robot controller 180. The robot controller

35
180 may be a remote computer executing a software interface

from which an operator may control one or more robot plat-

forms (100A, 100B, and 100C) individually or in coopera-

tion. The robot controller 180 may communicate with the

robot platforms (100A, 100B, and 100C), and the robot plat-

40
forms (100A, 100B, and 100C) may communicate with each

other, across the communication channels 160. While FIG. 2
illustrates one robot controller 180 and three robot platforms

(100A, 100B, and 100C) those of ordinary skill in the art will

recognize that a robot control environment may include one

45
or more robot platforms 100 and one or more robot controllers

180. In addition, the robot controller 180 may be a version of

a robot platform 100.

Software processes illustrated herein are intended to illus-

trate representative processes that may be performed by the

5o robot platform 100 or robot controller 180. Unless specified
otherwise, the order in which the processes are described is

not intended to be construed as a limitation. Furthermore, the
processes may be implemented in any suitable hardware,

software, firmware, or combinations thereof. By way of

55 example, software processes may be stored on the storage
device 130, transferred to the memory 125 for execution, and

executed by the processor 120.

When executed as firmware or software, the instructions
for performing the processes may be stored on a computer

6o readable medium (i.e., storage device 130). A computer read-

able medium includes, but is not limited to, magnetic and

optical storage devices such as disk drives, magnetic tape,

CDs (compact disks), DVDs (digital versatile discs or digital

video discs), and semiconductor devices such as RAM (Ran-
65 dom Access Memory), DRAM (Dynamic Random Access

Memory), ROM (Read-Only Memory), EPROM (Erasable

Programmable Read-Only Memory), and Flash memory.

US 7,801,644 B2
7

2. Generic Robot Abstraction Architecture

Conventionally, robot architectures have been defined for

individual robots and generally must be rewritten or modified

to work with different sensor suites and robot platforms. This

means that adapting the behavior functionality created for

one robot platform to a different robot platform is problem-

atic. Furthermore, even architectures that propose a hardware

abstraction layer to create a framework for accepting various

hardware components still may not create a robot abstraction

layer wherein the abstractions presented for high level behav-

ioral programming are in terms of actionable components or
generic robot attributes rather than the hardware present on

the robot.

A notable aspect of the present invention is that it collates

the sensor data issued from hardware or other robotic archi-

tectures into actionable information in the form of generic

precepts. Embodiments of the present invention may include

a generic robot architecture (GRA), which comprises an

extensible, low-level framework, which can be applied across

a variety of different robot hardware platforms, perceptor

suites, and low-level proprietary control application pro-
gramming interfaces (APIs). By way of example, some of

these APIs may be Mobility, Aria, Aware, Player, etc.).

FIG. 3 is a software architecture diagram 200 illustrating

significant components of the GRA as a multi-level abstrac-

tion. Within the GRA, various levels of abstraction are avail-
able for use in developing robot behavior at different levels of

dynamic autonomy 290. The object oriented structure of the

GRA may be thought of as including two basic levels. As is

conventional in object oriented class structures, each subse-

quent level inherits all of the functionality of the higher levels.

At the lower level, the GRA includes a hardware abstrac-
tion level, which provides for portable, object oriented access

to low-level hardware perception and control modules that

may be present on a robot. The hardware abstraction level is

reserved for hardware specific classes and includes, for

example, implementations for the actual robot geometry and

sensor placement on each robot type.

Above the hardware abstraction level, the GRA includes a
robot abstraction level, which provides atomic elements (i.e.,

building blocks) of generic robot attributes and develops a

membrane between the low-level hardware abstractions and

controls. This membrane is based on generic robot attributes,

or actionable components, which include robot functions,

robot perceptions, and robot status. Each generic robot

attribute may utilize a variety of hardware abstractions, and

possibly other robot attributes, to accomplish its individual

function.

The robot abstraction level may include implementations

that are generic to given proprietary low-level APIs.

Examples of functions in this class level include the interface

calls for a variety of atomic level robot behaviors such as, for

example, controlling motion and reading sonar data.

The GRA enables substantially seamless porting of behav-

ioral intelligence to new hardware platforms and control APIs

by defining generic robot attributes and actionable compo-

nents to provide the membrane and translation between

behavioral intelligence and the hardware. Once a definition

for a robot in terms of platform geometries, sensors, and API

calls has been specified, behavior and intelligence may be

ported in a substantially seamless manner for future develop-

ment. In addition, the object oriented structure enables

straightforward extension of the Generic Robot Architecture

for defining new robot platforms as well as defining low-level

abstractions for new perceptors, motivators, communications

channels, and manipulators.

8
The GRA includes an interpreter such that existing and

new robot behaviors port in a manner that is transparent to

both the operator and the behavior developer. This interpreter

may be used to translate commands and queries back and

5 forth between the operator and robot with a common inter-

face, which can then be used to create perceptual abstractions

and behaviors. When the "common language" supported by

the GRA is used by robot developers, it enables developed

behaviors and functionality to be interchangeable across mul-

10 tiple robots. In addition to creating a framework for develop-

ing new robot capabilities, the GRA interpreter may be used

to translate existing robot capabilities into the common lan-

guage so that the behavior can then be used on other robots.

The GRA is portable across a variety of platforms and pro-

15 prietary low-level APIs. This is done by creating a standard

method for commanding and querying robot functionality

that exists on top of any particular robot manufacturer’s con-

trol API. Moreover, unlike systems where behavior stems

from sensor data, the GRA facilitates a consistent or predict-

2o able behavior output regardless of robot size or type by cat-

egorizing the robot and sensor data into perceptual abstrac-

tions from which behaviors can be built.

The Generic Robot Architecture also includes a scripting

structure for orchestrating the launch of the different servers

25 and executables that may be used for running the GRA on a
particular robot platform. Note that since these servers and

executables (e.g., laser server, camera server, and base plat-

form application) will differ from robot to robot, the scripting

structure includes the ability to easily specify and coordinate

3o the launch of the files that may be needed for specific appli-

cations. In addition, the scripting structure enables automatic

launching of the system at boot time so that the robot is able

to exhibit functionality without any operator involvement

(i.e., no need for a remote shell login).

35 The Generic Robot Architecture may access configuration

files created for each defined robot type. For example, the

configuration files may specify what sensors, actuators, and

APIs are being used on a particular robot. Use of the scripting

structure together with the configuration enables easy recon-
4o figuration of the behaviors and functionality of the robot

without having to modify source code (i.e., for example,

recompile the C/C++ code).

The GRA keeps track of which capabilities are available

(e.g., sensors, actuators, mapping systems, communications)
45 on the specific embodiment and uses virtual and stub func-

tions within the class hierarchy to ensure that commands and

queries pertaining to capabilities that an individual robot does

not have do not cause data access errors. For example, in a

case where a specific capability, such as a manipulator, does

5o not exist, the GRA returns special values indicating to the

high-level behavioral control code that the command cannot

be completed or that the capability does not exist. This makes

it much easier to port seamlessly between different robot

types by allowing the behavior code to adapt automatically to

55 different robot configurations.

The above discussion of GRA capabilities has focused on

the robot-oriented aspects of the GRA. However, the robot-

oriented class structure is only one of many class structures

included in the GRA. For example, the GRA also includes

6o multi-tiered class structures for communication, range-sens-

ing, cameras, and mapping. Each one of these class structures

is set up to provide a level of functional modularity and allow

different sensors and algorithms to be used interchangeably.

By way of example and not limitation, without changing the

65 behavioral code built on the GRA at the robot behavior level,
it may be possible to swap various mapping and localization

systems or cameras and yet achieve the same functionality

US 7,801,644 B2
9

simply by including the proper class modules at the hardware

abstraction level and possibly at the robot abstraction level.

Additional capabilities and features of each of the levels of

the GRA are discussed below.
2.1. Hardware Abstraction Level

FIG. 4 illustrates the hardware abstraction level 210, which
includes representative hardware abstractions of hardware

modules that may be available on a robot platform. These

hardware abstractions create an object oriented interface

between the software and hardware that is modular, reconfig-

urable, and portable across robot platforms. As a result, a
software component can create a substantially generic hook

to a wide variety of hardware that may perform a similar
function. It will be readily apparent to those of ordinary skill

in the art that the modules shown in FIG. 4 are a representa-

tive, rather than comprehensive example of hardware abstrac-

tions. Some of these hardware abstractions include; action
abstractions 212 (also referred to as manipulation abstrac-

tions) for defining and controlling manipulation type devices

on the robot, communication abstractions 214 for defining

and controlling communication media and protocols, control

abstractions 216 (also referred to as locomotion abstractions)
for defining and controlling motion associated with various

types of locomotion hardware, and perception abstractions

218 for defining and controlling a variety of hardware mod-

ules configured for perception of the robot’s surroundings

and pose (i.e., position and orientation).

2.1.1. Manipulation Abstractions

Action device abstractions 212 may include, for example,
vacuum devices, magnetic pickup devices, arm manipulators,

scoops, grippers, camera pan and tilt manipulators, and the

like.

2.1.2. Communication Abstractions
The communication abstractions present substantially

common communications interfaces to a variety of commu-

nication protocols and physical interfaces. The communica-

tion channels 160 may be adaptable to both wired and wire-
less communication, as well as supporting various

communication protocols. By way of example and not limi-

tation, the communication abstractions may be configured to

support serial and parallel communication channels, such as,

for example, USB, IEEE-1394, 802.11a/b/g, cellular tele-

phone, and other wired and wireless communication proto-

cols.

2.1.3. Locomotion Abstractions

Locomotion abstractions 216 may be based on robot

motion, not necessarily on specific hardware components.

For example and not limitation, motion control abstractions

may include drive, steering, power, speed, force, odometry,

and the like. Thus, the motion abstractions can be tailored to

individual third party drive controls at the hardware abstrac-

tion level and effectively abstracted away from other archi-
tectural components. In this manner, support for motion con-

trol of a new robot platform may comprise simply supplying

the APIs which control the actual motors, actuators, and the

like, into the locomotion abstraction framework.
2.1.4. Perception Abstractions

The perception abstractions 218 may include abstractions

for a variety of perceptive hardware useful for robots, such as,

for example, inertial measurements, imaging devices, sonar

measurements, camera pan!tilt abstractions, GPS and iGPS

abstractions, thermal sensors, infrared sensors, tactile sen-
sors, laser control and perception abstractions, GPR, compass

measurements, EMI measurements, and range abstractions.

2.2. Robot Abstraction Level

While the hardware abstraction level 210 focuses on a

software model for a wide variety of hardware that may be

10
useful on robots, the robot abstraction level 230 (as illustrated
in FIGS. 3 and 5) focuses on generic robot attributes. The

generic robot attributes enable building blocks for defining

robot behaviors at the robot behavior level and provide a

5 membrane for separating the definition of robot behaviors

from the low-level hardware abstractions. Thus, each robot
attribute may utilize one or more hardware abstractions to

define its attribute. These robot attributes may be thought of
as actionable abstractions. In other words, a given actionable

10 abstraction may fuse multiple hardware abstractions that pro-

vide similar information into a data set for a specific robot

attribute. For example and not limitation, the generic robot

attribute of "range" may fuse range data from hardware

abstractions of an IR sensor and a laser sensor to present a

15 single coherent structure for the range attribute. In this way,

the GRA presents robot attributes as building blocks of inter-

est for creating robot behaviors such that, the robot behavior

can use the attribute to develop a resulting behavior (e.g.,

stop, slow down, turn right, turn left, etc).

20 Furthermore, a robot attribute may combine information

from dissimilar hardware abstractions. By way of example

and not limitation, the position attributes may fuse informa-

tion from a wide array of hardware abstractions, such as:

perception modules like video, compass, GPS, laser, and
25 sonar; along with control modules like drive, speed, and

odometry. Similarly, a motion attribute may include informa-

tion from position, inertia, range, and obstruction abstrac-

tions.

This abstraction of robot attributes frees the developer
30 from dealing with individual hardware elements. In addition,

each robot attribute can adapt to the amount, and type of

information it incorporates into the abstraction based on what

hardware abstractions may be available on the robot platform.

The robot attributes, as illustrated in FIG. 5, are defined at
35 a relatively low level of atomic elements that include

attributes of interest for a robot’s perception, status, and con-

trol. Some of these robot attributes include; robot health 232,
robot position 234, robot motion 236, robot bounding shape

238, environmental occupancy grid 240, and range 242. It
40 will be readily apparent to those of ordinary skill in the art that

the modules shown in FIG. 5 are a representative, rather than

comprehensive, example of robot attributes. Note that the

term "robot attributes" is used somewhat loosely, given that

robot attributes may include physical attributes such as robot
45 health abstractions 232 and bounding shape 238 as well as

how the robot perceives its environment, such as the environ-

mental occupancy grid 240 and range attributes 242.

2.2.1. Robot Health

The robot health abstractions 232 may include, for
50

example, general object models for determining the status

and presence of various sensors and hardware modules, deter-

mining the status and presence of various communication

modules, determining the status of on-board computer com-

55 ponents.
2.2.2. Robot Bounding Shape

The robot bounding shape 238 abstractions may include,

for example, definitions of the physical size and boundaries of

the robot and definitions of various thresholds for movement

60 that define a safety zone or event horizon, as is explained more

fully below.

2.2.3. Robot Motion

The robot motion abstractions 236 may include abstrac-

tions for defining robot motion and orientation attributes such

65 as, for example, obstructed motion, velocity, linear and angu-

lar accelerations, forces, and bump into obstacle, and orien-

tation attributes such as roll, yaw and pitch.

US 7,801,644 B2
11

2.2.4. Range

The range abstractions 242 may include, for example,
determination of range to obstacles from lasers, sonar, infra-
red, and fused combinations thereof.

In more detail, FIG. 6 illustrates a representative embodi-
ment of how a range abstraction may be organized. A variety
of coordinate systems may be in use by the robot and an
operator. By way of example, a local coordinate system may
be defined by an operator relative to a space of interest (e.g.,
a building) or a world coordinate system defined by sensors
such as a GPS unit, an iGPS unit, a compass, an altimeter, and
the like. A robot coordinate system may be defined in Carte-
sian coordinates relative to the robot’s orientation such that,
for example, the X-axis is to the right, the Y-axis is straight
ahead, and the Z-axis is up. Another robot coordinate system
may be cylindrical coordinates with a range, angle, and height
relative to the robot’s current orientation.

The range measurements for the representative embodi-
ment illustrated in FIG. 6 are organized in a cylindrical coor-
dinate system relative to the robot. The angles may be parti-
tioned into regions covering the front, left, right and back of
the robot and given names such as, for example, those used in
FIG. 6.

Thus, regions in front may be defined and named as:

Right_In_Front (310 and 310’), representing an angle
between -15° and 15°;

Front 312, representing an angle between -45° and 45°;
and

Min_Front_Dist 314, representing an angle between -90°
and 90°.

Similarly, regions to the left side may be defined as:

Left_Side 321, representing an angle between 100° and
80°;

Left_Front 322, representing an angle between 60° and
30°;

Front Left Side 324, representing an angle between 70°
and 50°; and

L_Front 326, representing an angle between 45° and 1 o.

For the right side, regions may be defined as:

Right_Side 330, representing an angle between -100° and
-80°;

Right_Front 332, representing an angle between -60° and
-30°;

Front_Right_Side 334, representing an angle between
-70° and -50°; and

R_Front 336, representing an angle between -45° and 0°.

While not shown, those of ordinary skill in the art will
recognize that with the exception of the Left_Side 321 and
Right_Side 330 regions, embodiments may include regions in
the back, which are a mirror image of those in the front
wherein the "Front" portion of the name is replaced with
"Rear."

Furthermore, the range attributes define a range to the
closest object within that range. However, the abstraction of
regions relative to the robot, as used in the range abstraction
may also be useful for many other robot attributes and robot
behaviors that may require directional readings, such as, for
example, defining robot position, robot motion, camera posi-
tioning, an occupancy grid map, and the like.

In practice, the range attributes may be combined to define
a more specific direction. For example, directly forward
motion may be defined as a geometrically adjusted combina-
tion of Right_In_Front 310, L_Front 326, R_Front 336,
Front_Left_Side 324, and Front_Right_Side 334.

12
2.2.5. Robot Position and Environmental Occupancy Grid

Maps
Returning to FIG. 5, the robot abstractions may include

position attributes 234. Mobile robots may operate effectively
5 only if they, or their operators, know where they are. Conven-

tional robots may rely on real-time video and global position-
ing systems (GPS) as well as existing maps and floor plans to
determine their location. However, GPS may not be reliable
indoors and video images may be obscured by smoke or dust,

10 or break up because of poor communications. Maps and floor
plans may not be current and often are not readily available,
particularly in the chaotic aftermath of natural, accidental or
terrorist events. Consequently, real-world conditions on the
ground often make conventional robots that rely on a priori

15 maps ineffective.
Accurate positioning knowledge enables the creation of

high-resolution maps and accurate path following, which
may be needed for high-level deliberative behavior, such as
systematically searching or patrolling an area.

2o Embodiments of the present invention may utilize various
mapping or localization techniques including positioning
systems such as indoor GPS, outdoor GPS, differential GPS,
theodolite systems, wheel-encoder information, and the like.
To make robots more autonomous, embodiments of the

25 present invention may fuse the mapping and localization
information to build 3D maps on-the-fly that let robots under-
stand their current position and an estimate of their surround-
ings. Using existing information, map details may be
enhanced as the robot moves through the environment. Ulti-

3o mately, a complete map containing rooms, hallways, door-
ways, obstacles and targets may be available for use by the
robot and its human operator. These maps also may be shared
with other robots or human first responders.

With the on-board mapping and positioning algorithm that
35 accepts input from a variety of range sensors, the robot may

make substantially seamless transitions between indoor and
outdoor operations without regard for GPS and video drop-
outs that occur during these transitions. Furthermore,
embodiments of the present invention provide enhanced fault

4o tolerance because they do not require off-board computing or
reliance on potentially inaccurate or non-existent a priori
maps.

Embodiments of the present invention may use localization
methods by sampling range readings from scanning lasers

45 and ultrasonic sensors and by reasoning probabilistically
about where the robot is within its internal model of the world.
The robot localization problem may be divided into two sub-
tasks: global position estimation and local position tracking.
Global position estimation is the ability to determine the

5o robot’s position in an a priori or previously learned map,
given no information other than that the robot is somewhere in
the region represented by the map. Once a robot’s position
has been found in the map, local tracking is the problem of
keeping track of the robot’s position over time and move-

55 ment.
The robot’s state space may be enhanced by localizaton

methods such as Monte Carlo techniques and Markovian
probability grid approaches for position estimation, as are
well known by those of ordinary skill in the art. Many of these

6o techniques provide efficient and substantially accurate
mobile robot localization.

With a substantially accurate position for the robot deter-
mined, local tracking can maintain the robot’s position over
time and movement using dead-reckoning, additional global

65 positioning estimation, or combinations thereof. Dead-reck-
oning is a method of navigation by keeping track of how far
you have gone in any particular direction. For example, dead-

US 7,801,644 B2
13

reckoning would determine that a robot has moved a distance

of about five meters at an angle from the current pose of about

37 degrees if the robot moves four meters forward, turns 90

degrees to the right, and moves forward three meters. Dead-

reckoning can lead to navigation errors if the distance traveled

in a given direction, or the angle through which a robot turns,

is interpreted incorrectly. This can happen, for example, if one

or more of the wheels on the robot spin in place when the

robot encounters an obstacle.

Therefore, dead-reckoning accuracy may be bolstered by

sensor information from the environment, new global posi-

tioning estimates, or combinations thereof. With some form

of a map, the robot can use range measurements to map

features to enhance the accuracy of a pose estimate. Further-

more, the accuracy of a pose estimate may be enhanced by

new range measurements (e.g., laser scans) into a map that

may be growing in size and accuracy. In Simultaneous Local-

ization and Mapping (SLAM), information from the robot’s

encoders and laser sensors may be represented as a network of

probabilistic constraints linking the successive positions
(poses) of the robot. The encoders may relate one robot pose

to the next via dead-reckoning. To give further constraints

between robot poses, the laser scans may be matched with

dead-reckoning, including constraints for when a robot

returns to a previously visited area.

The robot abstractions may include environmental occu-

pancy grid attributes 240. One form of map that may be useful

from both the robot’s perspective and an operator’s perspec-

tive is an occupancy grid. An environmental occupancy grid,

formed by an occupancy grid abstraction 240 (FIG. 5) is

illustrated in FIG. 7. In forming an occupancy grid, a robot

coordinate system may be defined in Cartesian coordinates

relative to the robot’s orientation such that, for example, the

X-axis is to the right, the Y-axis is straight ahead, and the

Z-axis is up. Another robot coordinate system may be defined

in cylindrical coordinates with a range, angle, and height

relative to the robot’s current orientation. Furthermore, occu-
pancy grids may be translated to other coordinate systems for

use by an operator.

An occupancy grid map 390 may be developed by dividing

the environment into a discrete grid of occupancy cells 395

and assigning a probability to each grid indicating whether

the grid is occupied by an object. Initially, the occupancy grid

may be set so that every occupancy cell 395 is set to an initial
probability. As the robot scans the environment, range data

developed from the scans may be used to update the occu-

pancy grid. For example, based on range data, the robot may

detect an object at a specific orientation and range away from

the robot. This range data may be converted to a different

coordinate system (e.g., local or world Cartesian coordi-

nates). As a result of this detection, the robot may increase the

probability that the particular occupancy cell 395 is occupied

and decrease the probability that occupancy cells 395
between the robot and the detected object are occupied. As the

robot moves through its environment, new horizons may be

exposed to the robot’s sensors, which enable the occupancy

grid to be expanded and enhanced. To enhance map building

and localization even further, multiple robots may explore an

environment and cooperatively communicate their map infor-

mation to each other or a robot controller to cooperatively

build a map of the area.

The example occupancy grid map 390 as it might be pre-

sented to an operator is illustrated in FIG. 7. The grid of

occupancy cells 395 can be seen as small squares on this

occupancy grid 390. A robot path 380 is shown to illustrate

how the robot may have moved through the environment in

constructing the occupancy grid 390. Of course, those of

10

14
ordinary skill in the art will recognize that, depending on the
application and expected environment, the occupancy grid

390 may be defined in any suitable coordinate system and

may vary in resolution (i.e., size of each occupancy cell 395).

In addition, the occupancy grid 390 may include a dynamic

resolution such that the resolution may start out quite coarse

while the robot discovers the environment, then evolve to a
finer resolution as the robot becomes more familiar with its

surroundings.

3. Robotic Intelligence Kernel

A robot platform 100 may include a robot intelligence

kernel (may also be referred to herein as intelligence kernel),

which coalesces hardware components for sensing, motion,

15 manipulation, and actions with software components for per-

ception, communication, behavior, and world modeling into a

single cognitive behavior kernel that provides intrinsic intel-

ligence for a wide variety of unmanned robot platforms. The

intelligence kernel architecture may be configured to support

2o multiple levels of robot autonomy that may be dynamically
modified depending on operating conditions and operator

wishes.

The robot intelligence kernel (RIK) may be used for devel-

oping a variety of intelligent robotic capabilities. By way of

25 example and not limitation, some of these capabilities includ-
ing visual pursuit, intruder detection and neutralization, secu-

rity applications, urban reconnaissance, search and rescue,

remote contamination survey, and countermine operations.

Referring back to the software architecture diagram of
3o FIG. 3, the RIK comprises a multi-level abstraction including

a robot behavior level 250 and a cognitive level 270. The RIK

may also include the robot abstraction level 230 and the

hardware abstraction level 210 discussed above.

Above the robot abstraction level 230, the RIK includes the
35 robot behavior level 270,250, which defines specific complex

behaviors that a robot, or a robot operator, may want to

accomplish. Each complex robot behavior may utilize a vari-

ety of robot attributes, and in some cases a variety of hardware

abstractions, to perform the specific robot behavior.
4o

Above the robot behavior level 250, the RIK includes the
cognitive level 270, which provides cognitive conduct mod-

ules to blend and orchestrate the asynchronous events from

the complex robot behaviors and generic robot behaviors into

combinations of functions exhibiting cognitive behaviors,
45 wherein high level decision making may be performed by the

robot, the operator, or combinations of the robot and the

operator.

Some embodiments of the RIK may include, at the lowest

50
level, the hardware abstraction level 210, which provides for

portable, object oriented access to low-level hardware per-

ception and control modules that may be present on a robot.

These hardware abstractions have been discussed above in

the discussion of the GRA.

55 Some embodiments of the RIK may include, above the
hardware abstraction level 210, the robot abstraction level
230 including generic robot abstractions, which provide

atomic elements (i.e., building blocks) of generic robot

attributes and develop a membrane between the low-level

6o hardware abstractions and control based on generic robot
functions. Each generic robot abstraction may utilize a vari-

ety of hardware abstractions to accomplish its individual

function. These generic robot abstractions have been dis-

cussed above in the discussion of the GRA.

65 3.1. Robot Behaviors

While the robot abstraction level 230 focuses on generic

robot attributes, higher levels of the RIK may focus on; rela-

US 7,801,644 B2
15

tively complex robot behaviors at the robot behavior level

250, or on robot intelligence and operator collaboration at the

cognitive level 270.

The robot behavior level 250 includes generic robot classes

comprising functionality common to supporting behavior

across most robot types. For example, the robot behavior level

includes utility functions (e.g., Calculate angle to goal) and

data structures that apply across substantially all robot types

(e.g., waypoint lists). At the same time, the robot behavior

level defines the abstractions to be free from implementation

specifics such that the robot behaviors are substantially

generic to all robots.

The robot behavior level 250, as illustrated in FIG. 8, may

be loosely separated into reactive behaviors 252 and delib-

erative behaviors 254. Of course, it will be readily apparent to

those of ordinary skill in the art that the modules shown in

FIG. 8 are a representative, rather than comprehensive,

example of robot behaviors.

The reactive behaviors 252 may be characterized as behav-

iors wherein the robot reacts to its perception of the environ-

ment based on robot attributes, hardware abstractions, or
combinations thereof. Some of these reactive behaviors may

include autonomous navigation, obstacle avoidance, guarded

motion, visual tracking, laser tracking, get-unstuck behavior,

and reactive planning. As examples, and not limitations,
details regarding some of these behaviors are discussed in the

section below regarding application specific behaviors.

In contrast, deliberative behaviors 254 may be character-

ized as behaviors wherein the robot may need to make deci-

sions on how to proceed based on the results of the reactive

behaviors, information from the robot attributes and hard-

ware abstractions, or combinations thereof. Some of these
deliberative behaviors may include waypoint navigation with

automatic speed adjustment, global path planning, and occu-
pancy change detection. As examples, and not limitations,

details regarding some of these behaviors are discussed in the

section below regarding application specific behaviors.

3.2. Cognitive Conduct

The cognitive conduct level 270, as illustrated in FIG. 9,

represents the highest level of abstraction, wherein significant

robot intelligence may be built in to cognitive conduct mod-
ules, as well as significant operator-robot collaboration to

perform complex tasks requiring enhanced robot initiative

299. Cognitive conduct modules blend and orchestrate asyn-
chronous firings from the reactive behaviors 252, deliberative

behaviors 254, and robot attributes 230 into intelligent robot

conduct. Cognitive conduct modules may include conduct

such as GoTo 272, wherein the operator may simply give a

coordinate for the robot to go to and the robot takes the

initiative to plan a path and get to the specified location. This

GoTo conduct 272 may include a combination of robot

behaviors 250, robot attributes 230, and hardware abstrac-
tions 210, such as, for example, obstacle avoidance, get-

unstuck, reactive path planning, deliberative path planning,

and waypoint navigation.
Another representative cognitive conduct module is human

detection and pursuit 274, wherein the robot may react to

changes in the environment and pursue those changes. This

detection and pursuit conduct 274 may also include pursuit of

other objects, such as, for example, another robot. The detec-

tion and pursuit 274 conduct may include a combination of

robot behaviors 250, robot attributes 230, and hardware
abstractions 210, such as, for example, occupancy change

detection, laser tracking, visual tracking, deliberative path

planning, reactive path planning, and obstacle avoidance.

Other representative cognitive conduct modules include

conduct such as exploration and reconnaissance conduct 276,

16
combined with map building, leader/follower conduct 278,

and search and identify conduct 280.

Of course, it will be readily apparent to those of ordinary

skill in the art that the cognitive conduct modules shown in

5 FIG. 9 are a representative, rather than comprehensive

example of robot conduct that may be implemented using

embodiments of the present invention.

3.3. Timing and Behavior Adaptation

A notable aspect of the RIK is that the cognitive conduct

10 modules 270 and robot behaviors 250 generally operate from

a perception of speed of motion in relationship to objects and

obstacles. In other words, rather than being concerned with

spatial horizons and the distance away from an object, the

cognitive conduct 270 and robot behaviors 250 are largely

15 concerned with temporal horizons and how soon the robot

may encounter an object. This enables defining the cognitive

conduct 270 and robot behaviors 250 in a relativistic sense

wherein, for example, the modules interpret motion as an

event horizon wherein the robot may only be concerned with

2o obstacles inside the event horizon. For example, a robot

behavior 250 is not necessarily concerned with an object that

is 10 meters away. Rather, the robot behavior 250 may be

concerned that it may reach the object in two seconds. Thus,

the object may be within the event horizon when the object is

25 10 meters away and the robot is moving toward it at 5 meters/

second, whereas if the object is 10 meters away and the robot

is moving at 2 meters/second, the object may not be within the

event horizon.

This relativistic perception enables an adaptation to pro-

3o cessing power and current task load. If the robot is very busy,

for example, processing video, it may need to reduce its

frequency of processing each task. In other words, the amount

of time to loop through all the cognitive conduct 270 and

robot behaviors 250 may increase. However, with the RIK,

35 the cognitive conduct 270 and robot behaviors 250 can adapt

to this difference in frequency by modifying its robot behav-

iors 250. For example, if the time through a loop reduces from

200 Hz to 100 Hz, the robot behaviors 250 and cognitive

conduct 270 will know about this change in loop frequency

40 and may modify the way it makes a speed adjustment to avoid

an object. For example, the robot may need a larger change in

its speed of motion to account for the fact that the next

opportunity to adjust the speed is twice more distant in the

future at 100 Hz than it would be at 200 Hz. This becomes

45 more apparent in the discussion below, regarding the guarded

motion behavior.

To enable and control this temporal awareness, the RIK

includes a global timing loop in which cognitive conduct 270

and robot behaviors 250 may operate. Using this global tim-

50 ing loop, each module can be made aware of information such

as, for example, average time through a loop minimum and

maximum time through a loop, and expected delay for next

timing tick.

With this temporal awareness, the robot tends to modify its

55 behavior by adjusting its motion, and motion of its manipu-

lators, relative to its surroundings rather than adjusting its

position relative to a distance to an object. Of course, with the

wide array ofperceptors, the robot is still very much aware of

its pose and position relative to its environment and can

60 modify its behavior based on this positional awareness. How-

ever, with the RIK, the temporal awareness is generally more

influential on the cognitive conduct modules and robot behav-

iors than the positional awareness.

3.4. Dynamic Autonomy

65 To enhance the operator/robot tradeoffofcontrol, the intel-

ligence kernel provides a dynamic autonomy structure, which

is a decomposition of antonomy levels, allowing methods for

US 7,801,644 B2
17

shared control to permeate all levels of the multi-level

abstraction. Furthermore, the intelligence kernel creates an

object-oriented software architecture, which may require

little or no source code changes when ported to other plat-

forms and low-level proprietary controllers.
The dynamic autonomy structure of the RIK provides a

multi-level harmonization between human intervention and

robot initiative 299 across robot behaviors. As capabilities

and limitations change for both the human and the robot due

to workload, operator expertise, communication dropout, and

other factors, the RIK architecture enables shifts from one
level of autonomy to another. Consequently, the ability of the

robot to protect itself, make decisions, and accomplish tasks

without human assistance may enable increased operator effi-
ciency.

FIGS. 10A and 10B are depictions of a representative

embodiment of a dynamic autonomy structure illustrating

different levels of interaction between operator intervention

291 and robot initiative 299. As referred to herein operator, or

operator intervention 291, may include human operation via

a remote computer in communication with the robot, remote

operation by some other form of artificial intelligence oper-

ating on a remote computer in communication with the robot,

or some combination thereof.

At the lowest level, referred to as teleoperation mode 293,

the robot may operate completely under remote control and

take no initiative to perform operations on its own. At the

second level, referred to as safe mode 294, robot movement is
dependent on manual control from a remote operator. How-

ever, in safe mode 294, the robot may be equipped with a level

of initiative that prevents the operator from causing the robot

to collide with obstacles. At the third level, referred to as
shared mode 295, the robot can relieve the operator from the

burden of direct control. For example, the robot may use

reactive navigation to find a path based on the robot’ s percep-

tion of the environment. Shared mode 295 provides for a

balanced allocation of roles and responsibilities. The robot

accepts varying levels of operator intervention 291 and may

support dialogue through the use of scripted suggestions (e.g.,
"Path blocked! Continue left or right?") and other text mes-

sages that may appear within a graphical interface. At the
fourth level, referred to as collaborative tasking mode 296, a

high level of collaborative tasking may be developed between

the operator and the robot using a series of high-level tasks

such as patrol, search region or follow path. In collaborative

tasking mode 296, operator intervention 291 occurs on the

tasking level, while the robot manages most decision-making

and navigation. At the highest level, referred to as autono-

mous mode 297, a robot may behave in a substantially

autonomous manner, needing nothing more than being

enabled by an operator and perhaps given a very high level

command such as, for example, survey the area, or search for

humans.

FIG. 10A illustrates a representative embodiment of how

tasks may be allocated between the operator and the robot.

For example, teleoperation mode 293 may be configured such

that the operator defines tasks, supervises direction, motivates

motion, and prevents collision, in such a way that the robot

takes no initiative and the operator maintains control. In safe

mode 294, the operator may still define tasks, supervise direc-

tion, and motivate motion, while allowing the robot to take the

initiative to prevent collisions. In shared mode 295, the opera-

tor may still define tasks and supervise direction, while allow-

ing the robot to motivate motion and prevent collisions. In

collaborative tasking mode 296, the robot may possess the

initiative to prevent collisions, motivate motion, and super-

vise direction, while relinquishing operator intervention 291

18
to define task goals. In autonomous mode 297, the robot’s

initiative may prevent collisions, motivate motion, supervise

direction, and define task goals. Of course, those of ordinary

skill in the art will recognize that this allocation of tasks

5 between the operator and the robot is a representative alloca-

tion. Many other tasks and behaviors, and allocation of those

tasks and behaviors, are contemplated within the scope of the

present invention.

FIG. 10B illustrates various cognitive conduct, robot

10 behaviors, robot attributes, and hardware abstractions that

may be available at different levels of robot dynamic
autonomy 290. In general, moving from the teleoperation

mode 293 toward the autonomous mode 297 represents an

increase in the amount of robot initiative 299 and a decrease

15 in the amount of operator intervention 291. Conversely, mov-

ing from the autonomous mode 297 toward the teleoperation

mode 293 represents a decrease in the amount of robot ini-

tiative 299 and an increase in the amount of operator inter-

vention 291. Of course, those of ordinary skill in the art will

2o recognize that FIG. 10B is a representative sample of avail-

able conduct, behaviors, attributes, and hardware, as well as a
representative allocation between autonomy levels. The RIK

is configured such that many modules may operate across
different levels of autonomy by modifying the amount of

25 operator intervention 291, modifying the amount of robot

initiative 299, or combinations thereof.
The autonomy levels are structured in the robot intelli-

gence kernel such that each new level of autonomy is built on,

and encompasses, the subsequent level. For example, a

3o guarded motion mode processing (explained more fully

below) may include the behavior and representational frame-

work utilized by the teleoperation mode 293 processing, but

also include additional levels of robot initiative 299 based on

the various robot attributes (e.g., related to directional

35 motion) created in response to the teleoperation mode 293.

Shared mode 295 may include all of the functionality and

direct control of safe mode 294, but also allows robot initia-
tive 299 in response to the abstractions produced through the

guarded motion mode processing (e.g., fused range abstrac-

4o tions created in response to the direction motion abstrac-

tions). In addition, the collaborative tasking mode 296 may

initiate robot responses to the abstractions created in shared

mode 295 processing such as recognition that a box canyon

has been entered or that a communication link has been lost.
45 For a robotic system to gracefully accept a full spectrum of

intervention possibilities, interaction issues cannot be

handled merely as augmentations to a control system. There-

fore, opportunities for operator intervention 291 and robot

initiative 299 are incorporated as an integral part of the

5o robot’s intrinsic intelligence. Moreover, for autonomous

capabilities to evolve, the RIK is configured such that a robot
is able to recognize when help is needed from an operator,

other robot, or combinations thereof and learn from these
interactions.

55 As an example, in one representative embodiment, the

robot includes a Sony CCD camera that can pan, tilt and zoom

to provide visual feedback to the operator in the teleoperation

mode 293. The robot may also use this camera with increased

robot initiative 299 to characterize the environment and even

6o conduct object tracking.

In this embodiment, the RIK provides a graduated process

for the robot to protect itself and the environment. To do so,

the RIK may fuse a variety of range sensor information. A

laser range finder may be mounted on the front, and sonar

65 perceptors may be located around the mid-section of the

robot. The robot also may include highly sensitive bump

strips around its perimeter that register whether anything has

US 7,801,644 B2
19

been touched. To protect the top of the robot, especially the
cameras and mission-specific sensors placed on top of the

robot, infrared proximity sensors may be included to indicate

when an object is less than a few inches from the robot.

Additional infrared proximity sensors may be placed on the

bottom of the robot and point ahead of the robot toward the

ground in order to prevent the robot from traveling into an

open space (e.g., traveling offofa landing down a stairway).
Together, these sensors provide a substantial field of protec-

tion around the robot and allow the operator to command the

robot with increased confidence so that the robot can take
initiative to protect itself or its environment.

However, avoiding obstacles may be insufficient. Many

adverse environments may include forms of uneven terrain,

such as rabble. The robot should be able to recognize and

respond to these obstacles. Inertial sensors may be used to

provide acceleration data in three dimensions. This inertial

information may be fused with information from the wheel

encoders giving velocity and acceleration of the wheels, and

an electrical current may be drawn from the batteries, to

produce a measure of "unexpected" resistance that may be

encountered by the robot. As part of the dynamic autonomy,

the operator may be able to choose to set a resistance limit that

will automatically stop the robot once the specified threshold

has been exceeded. The resistance limit may be useful not

only for rough terrain, but also in situations when the operator

needs to override the "safe motion" capabilities (based on the

obstacle avoidance sensors) to do things like push chairs and

boxes out of the way and push doors open.

In addition, the RIK enables operators to collaborate with

mobile robots, by defining an appropriate level of discourse,

including a shared vocabulary and a shared cognitive work

space collaboratively constructed and updated on-the-fly

through interaction with the real world. This cognitive work

space could consist of terrain overlaid with semantic abstrac-

tions generated through autonomous recognition of environ-

mental features with point-and-click operator validation and

iconographic insertion of map entities. Real-time semantic

maps constructed collaboratively by humans, ground robots

and air vehicles could serve as the basis for a spectrum of
mutual human-robot interactions including tasking, situation

awareness, human-assisted perception and collaborative

environmental "understanding." Thus, the RIK enables

human-robot communication within the context of a mission

based on shared semantic maps between the robotic system

and the operator.

With reference to FIGS. 10A and 10B, additional details of
the dynamic autonomy structure 290 and corresponding

operation modes can be discussed.

3.4.1. Teleoperation Mode

In teleoperation mode 293, the operator has full, continu-

ous control of the robot at a low level. The robot takes little or

no initiative except, for example, to stop after a specified time

if it recognizes that communications have failed. Because the

robot takes little or no initiative in this mode, the dynamic

autonomy implementation provides appropriate situation

awareness to the operator using perceptual data fused from

many different sensors. For example, a tilt sensor may pro-

vide data on whether the robot is in danger of overturning.

Inertial effects and abnormal torque on the wheels (i.e., forces

not associated with acceleration) are fused to produce a mea-

sure of resistance as when, for example, the robot is climbing

over or pushing against an obstacle. Even in teleoperation

mode 293, the operator may be able to choose to activate a

resistance limit that permits the robot to respond to high

resistance and bump sensors. Also, a specialized interface

2O
may provide the operator with abstracted auditory, graphical

and textual representations of the environment and task.

Some representative behaviors and attributes that may be

defined for teleoperation mode 293 include joystick opera-

5 tion, perceptor status, power assessment, and system status.

3.4.2. Safe Mode

In safe mode 294, the operator directs movements of the

robot, but the robot takes initiative to protect itself. In doing

so, this mode frees the operator to issue motion commands

10 with less regard to protecting the robot, greatly accelerating

the speed and confidence with which the operator can accom-

plish remote tasks. The robot may assess its own status and

surrounding environment to decide whether commands are

safe. For example, the robot possesses a substantial self-

15 awareness of its position and will attempt to stop its motion

before a collision, placing minimal limits on the operator. In

addition, the robot may be configured to notify the operator of

environmental features (e.g., box canyon, comer, and hall-

way), immediate obstacles, tilt, resistance, etc., and also con-

2o tinuously assesses the validity of its diverse sensor readings

and communication capabilities. In safe mode 294, the robot

may be configured to refuse to undertake a task if it does not

have the ability (i.e., sufficient power or perceptual resources)

to safely accomplish it.

25 Some representative behaviors and attributes that may be

defined for safe mode 294 include guarded motion, resistance

limits, and bump sensing.

3.4.3. Shared Mode

In shared mode 295, the robot may take the initiative to

3o choose its own path, responds autonomously to the environ-

ment, and work to accomplish local objectives. This initiative

is primarily reactive rather than deliberative. In terms of navi-

gation, shared mode 295 may be configured such that the

robot responds only to its local (e.g., a two second event

35 horizon or a six meter radius), sensed environment. Although

the robot may handle the low-level navigation and obstacle

avoidance, the operator may supply intermittent input, often

at the robot’ s request, to guide the robot in general directions.

For example, a "Get Unstuck" behavior enables the robot to

4o autonomously extricate itself from highly cluttered areas that

may be difficult for a remote operator to handle.

Some representative behaviors and attributes that may be

defined for shared mode 295 include reactive planning, get

unstuck behavior, and obstacle avoidance.
45 3.4.4. Collaborative Tasking Mode

In collaborative tasking mode 296, the robot may perform

tasks such as, for example, global path planning to select its

own route, requiring no operator input except high-level task-
ing such as "follow that target" or "search this area" (perhaps

5o specified by drawing a circle around a given area on the map

created by the robot). For all these levels, the intelligence

resides on the robot itself, such that off-board processing is

unnecessary. To permit deployment within shielded struc-

tures, a customized communication protocol enables very

55 low bandwidth communications to pass over a serial radio
link only when needed. The system may use multiple and

separate communications channels with the ability to reroute

data when one or more connection is lost.

Some representative cognitive conduct and robot behav-

6o iors, and robot attributes that may be defined for collaborative

tasking mode 296 include waypoint navigation, global path

planning, go to behavior, retro-traverse behavior, area search

behavior, and environment patrol.

3.4.5. Autonomous Mode

65 In autonomous mode 297, the robot may perform with

minimal to no operator intervention 291. For behaviors in

autonomous mode 297, the operator may simply give a corn-

US 7,801,644 B2
21

mand for the robot to perform. Other than reporting status to

the operator, the robot may be free to plan paths, prioritize

tasks, and carry out the command using deliberative behav-

iors defined by the robot’s initiative.

Some representative behaviors and attributes that may be

defined for autonomous mode 297 include pursuit behaviors,

perimeter surveillance, urban reconnaissance, human pres-

ence detection, geological surveys, radiation surveys, virtual
rail behavior, countermine operations, and seeking impro-

vised explosive devices.

3.5. RIK Examples and Communication

Conventionally, robots have been designed as extensions

of human mobility and senses. Most seek to keep the human
in substantially complete control, allowing the operator,

through input from video cameras and other on-board sen-

sors, to guide the robot and view remote locations. In this

conventional "master-slave" relationship, the operator pro-

vides the intelligence and the robot is a mere mobile platform

to extend the operator’ s senses. The object is for the operator,

perched as it were on the robot’s back, to complete some

desired tasks. As a result, conventional robot architectures
may be limited by the need to maintain continuous, high-

bandwidth communications links with their operators to sup-

ply clear, real-time video images and receive instructions.

Operators may find it difficult to visually navigate when con-

ditions are smoky, dusty, poorly lit, completely dark or full of

obstacles and when communications are lost because of dis-
tance or obstructions.

The Robot Intelligence Kernel enables a modification to

the way humans and robots interact, from a master-slave

relationship to a collaborative relationship in which the robot

can assume varying degrees of autonomy. As the robot initia-
tive 299 increases, the operator can turn his or her attention to

the crucial tasks at hand (e.g., locating victims, hazards, dan-

gerous materials; following suspects; measuring radiation

and/or contaminant levels) without worrying about moment-

to-moment navigation decisions or communications gaps.

The RIK places the intelligence required for high levels of

autonomy within the robot. Unlike conventional designs, off-

board processing is not necessary. Furthermore, the RIK

includes low bandwidth communication protocols and can

adapt to changing connectivity and bandwidth capabilities.

By reducing or eliminating the need for high-bandwidth

video feeds, the robot’s real-world sensor information can be
sent as compact data packets over low-bandwidth (<1 Kbs)

communication links such as, for example, cell phone
modems and long-range radio. The robot controller may then

use these low bandwidth data packets to create a comprehen-

sive graphical interface, similar to a computer game display,

for monitoring and controlling the robot. Due to the low

bandwidth needs enabled by the dynamic autonomy structure

of the RIK, it may be possible to maintain communications

between the robot and the operator over many miles and

through thick concrete, canopy, and even the ground itself.

FIG. 11 illustrates a representative embodiment of the RIK

processing of robot abstractions 300 and communications

operations 350 for communicating information about cogni-

tive conduct, robot behaviors, robot attributes, and hardware
abstractions to the robot controller or other robots. The upper

portion 300 of FIG. 11 illustrates the robot abstractions, and

hardware abstractions that may be fused to develop robot

attributes. In the embodiment of FIG. 11, a differential GPS

302, a GPS 304, wheel encoders 306 and inertial data 313
comprise hardware abstractions that may be processed by a

Kalman filter 320. The robot attributes for mapping and local-

ization 308 and localized pose 311 may be developed by

including information from, among other things, the wheel

22
encoders 306 and inertial data 313. Furthermore, the local-
ized pose 311 may be a function of the results from mapping

and localization 308. As with the hardware abstractions, these
robot attributes of mapping and localization 308 and local-

5 ized pose 311 may be processed by a Kalman filter 320.

Kalman filters 320 are efficient recursive filters that can

estimate the state of a dynamic system from a series of incom-

plete and noisy measurements. By way of example and not

limitation, many of the perceptors used in the RIK include an

10 emitter/sensor combination, such as, for example, an acoustic

emitter and a microphone array as a sensor. These perceptors

may exhibit different measurement characteristics depending

on the relative pose of the emitter and target and how they

interact with the environment. In addition, to one degree or

15 another, the sensors may include noise characteristics relative

to the measured values. In robotic applications, Kalman filters

320 may be used in many applications for improving the

information available from perceptors. As one example of

many applications, when tracking a target, information about

20 the location, speed, and acceleration ofthe target may include

significant corruption due to noise at any given instant of

time. However, in dynamic systems that include movement, a

Kalman filter 320 may exploit the dynamics of the target,

which govern its time progression, to remove the effects of the

25 noise and get a substantially accurate estimate of the target’s

dynamics. Thus, a Kalman filter 320 can use filtering to assist

in estimating the target’s location at the present time, as well

as prediction to estimate a target’s location at a future time.

As a result of the Kalman filtering, or after being processed

30 by the Kalman filter 320, information from the hardware

abstractions and robot attributes may be combined to develop

other robot attributes. As examples, the robot attributes illus-

trated in FIG. 11 include position 333, movement 335,

obstruction 337, occupancy 338, and other abstractions 340.

35 With the robot attributes developed, information from

these robot attributes may be available for other modules

within the RIK at the cognitive level 270, the robot behavior

level 250, and the robot abstraction level 230.
In addition, information from these robot attributes may be

40 processed by the RIK and communicated to the robot con-

troller or other robots, as illustrated by the lower portion of

FIG. 11. Processing information from the robot conduct,

behavior, and attributes, as well as information from hard-
ware abstractions serves to reduce the required bandwidth

45 and latency such that the proper information may be commu-

nicated quickly and concisely. Processing steps performed by

the RIK may include a significance filter 352, a timing mod-

ule 354, prioritization 356, and bandwidth control 358.
The significance filter 352 may be used as a temporal filter

50 to compare a time varying data stream from a given RIK

module. By comparing current data to previous data, the

current data may not need to be sent at all or may be com-

pressed using conventional data compression techniques
such as, for example, run length encoding and Huffman

55 encoding. Another example would be imaging data, which

may use data compression algorithms such as Joint Photo-

graphic Experts Group (JPEG) compression and Moving Pic-

ture Experts Group (MPEG) compression to significantly

reduce the needed bandwidth to communicate the informa-

60 tion.

The timing module 354 may be used to monitor informa-

tion from each RIK module to optimize the periodicity at

which it may be needed. Some information may require peri-

odic updates at a faster rate than others. In other words, timing

65 modulation may be used to customize the periodicity oftrans-

missions of different types of information based on how

important it may be to receive high frequency updates for that

US 7,801,644 B2
23

information. For example, it may be more important to notify

an operator, or other robot, of the robot’s position more often

than it would be to update the occupancy grid map 390 (FIG.

7).
The prioritization 356 operation may be used to determine

which information to send ahead of other information based

on how important it may be to minimize latency from when

data is available to when it is received by an operator or

another robot. For example, it may be more important to

reduce latency on control commands and control queries

relative to map data. As another example, in some cognitive
conduct modules where there may be significant collabora-

tion between the robot and an operator, or in teleoperation

mode where the operator is in control, it may be important to

minimize the latency of video information so that the operator

does not perceive a significant time delay between what the

robot is perceiving and when it is presented to the operator.

These examples illustrate that for prioritization 356, as
well as the significance filter 352, the timing modulation 354,

and the bandwidth control 358, communication may be task

dependent and autonomy mode dependent. As a result, infor-

mation that may be a high priority in one autonomy mode may

receive a lower priority in another autonomy mode.

The bandwidth control operation may be used to limit

bandwidth based on the communication channel’s bandwidth
and how much of that bandwidth may be allocated to the

robot. An example here might include progressive JPEG
wherein a less detailed (i.e., coarser) version of an image may

be transmitted if limited bandwidth is available. For video, an
example may be to transmit at a lower frame rate.

After the communication processing is complete, the

resultant information may be communicated to, or from, the

robot controller, or another robot. For example, the informa-

tion may be sent from the robot’ s communication device 155,

across the communication link 160, to a communication

device 185 on a robot controller, which includes a multi-robot
interface 190.

FIGS. 12 and 13 illustrate a more general interaction

between hardware abstractions, robot abstractions, environ-

ment abstractions, robot behaviors, and robot conduct. FIG.
12 illustrates a diagram 200 of general communication

between the hardware abstractions associated with sensor

data servers 211 (also referred to as hardware abstractions),

the robot abstractions 230 (also referred to as robot
attributes), and environment abstractions 239. Those of ordi-
nary skill in the art will recognize that FIG. 12 is intended to

show general interactions between abstractions in a represen-

tative embodiment and is not intended to show every interac-
tion possible within the GRA and RIK. Furthermore, it is not

necessary to discuss every line between every module. Some

example interactions are discussed to show general issues

involved and describe some items from FIG. 12 that may not

be readily apparent from simply examining the drawing. Gen-

erally, the robot abstractions 230 may receive and fuse infor-

mation from a variety of sensor data servers 211. For

example, in forming a general abstraction about the robot’s

current movement attributes, the movement abstraction may

include information from bump sensors, GPS sensors, wheel

encoders, compass sensors, gyroscopic sensors, tilt sensors,

and the current brake state.

Some robot attributes 230, such as the mapping and local-

ization attribute 231 may use information from a variety of

hardware abstractions 210, as well as other robot attributes
230. The mapping and localization attribute 231 may use

sonar and laser information from hardware abstractions 210

together with position information and local position infor-

mation to assist in defining maps of the environment, and the

24
position of the robot on those maps. Line 360 is bold to

indicate that the mapping and localization attribute 231 may

be used by any or all of the environment abstractions 239. For

example, the occupancy grid abstraction uses information

5 from the mapping and localization attribute 231 to build an

occupancy grid as is explained, among other places, above

with respect to FIG. 7. Additionally, the robot map position

attribute may use the mapping and localization attribute 231

and the occupancy grid attribute to determine the robot’s

10 current position within the occupancy grid.

Bold line 362 indicates that any or all of the robot abstrac-

tions 230 and environment abstractions 239 may be used at

higher levels of the RIK such as the communications layer

350, explained above with respect to FIG. 11, and the behav-
15 ior modulation 260, explained below with respect to FIG. 13.

FIG. 13 illustrates general communication between the

robot abstractions 230 and environment abstractions 239 with

higher level robot behaviors and cognitive conduct. As with

FIG. 12, those of ordinary skill in the art will recognize that
2o FIG. 13 is intended to show general interactions between

abstractions, behaviors, and conduct in a representative

embodiment and is not intended to show every interaction

possible within the GRA and RIK. Furthermore, it is not

necessary to discuss every line between every module. Some
25 example interactions are discussed to show general issues

involved and describe some items from FIG. 13 that may not

be readily apparent from simply examining the drawing.

As an example, the event horizon attribute 363 may utilize

and fuse information from robot abstraction level 230 such as
3o range and movement. Information from the event horizon

attribute 363 may be used by behaviors, such as, for example,

the guarded motion behavior 500 and the obstacle avoidance

behavior 600. Bold line 370 illustrates that the guarded
motion behavior 500 and the obstacle avoidance behavior 600

35 may be used by a variety of other robot behaviors and cogni-

tive conduct, such as, for example, follow/pursuit conduct,

virtual rail conduct, countermine conduct, area search behav-
ior, and remote survey conduct.

40 4. Representative Behaviors and Conduct
The descriptions in this section illustrate representative

embodiments of robot behaviors and cognitive conduct that
may be included in embodiments of the present invention. Of
course, those of ordinary skill in the art will recognize these

45 robot behaviors and cognitive conduct are illustrative
embodiments and are not intended to be a complete list or
complete description of the robot behaviors and cognitive
conduct that may be implemented in embodiments of the
present invention.

50 In general, in the flow diagrams illustrated herein, T indi-
cates an angular velocity of either the robot or a manipulator
and V indicates a linear velocity. Also, generally, T and V are
indicated as a percentage of a predetermined maximum. Thus
V 20% indicates 20% of the presently specified maximum

55 velocity (which may be modified depending on the situation)
of the robot or manipulator. Similarly, T 20% indicates 20%
of the presently specified maximum angular velocity of the
robot or manipulator. It will be understood that the presently
specified maximums may be modified over time depending

6o on the situations encountered. In addition, those of ordinary
skill in the art will recognize that the values of linear and
angular velocities used for the robot behaviors and cognitive
conduct described herein are representative of a specific
embodiment. While this specific embodiment may be useful

65 in a wide variety of robot platform configurations, other linear
and angular velocities are contemplated within the scope of
the present invention.

US 7,801,644 B2
25

Furthermore, those of ordinary skill in the art will recog-

nize that the use of velocities, rather than absolute directions,
is enabled largely by the temporal awareness of the robot

behaviors and cognitive conduct in combination with the
global timing loop. This gives the robot behaviors and cog-

nitive conduct an opportunity to adjust velocities on each
timing loop, enabling smoother accelerations and decelera-

tions. Furthermore, the temporal awareness creates a behav-

ior of constantly moving toward a target in a relative sense,

rather than attempting to move toward an absolute spatial

point.

4.1. Autonomous Navigation

Autonomous navigation may be a significant component

for many mobile autonomous robot applications. Using

autonomous navigation, a robot may effectively handle the
task of traversing varied terrain while responding to positive

and negative obstacles, uneven terrain, and other hazards.

Embodiments of the present invention enable the basic intel-

ligence necessary to allow a broad range of robotic vehicles to

navigate effectively both indoors and outdoors.
Many proposed autonomous navigation systems simply

provide GPS waypoint navigation. However, GPS can be

jammed and may be unavailable indoors or under forest

canopy. A more autonomous navigation system includes the

intrinsic intelligence to handle navigation even when external

assistance (including GPS and communications) has been

lost. Embodiments of the present invention include a por-

table, domain-general autonomous navigation system, which

blends the responsiveness of reactive, sensor based control

with the cognitive approach found through waypoint follow-

ing and path planning. Through its use of the perceptual

abstractions within the robot attributes of the GRA, the
autonomous navigation system can be used with a diverse

range of available sensors (e.g., range, inertial, attitude,

bump) and available positioning systems (e.g., GPS, laser,

RF, etc.).
The autonomous navigation capability may scale auto-

matically to different operational speeds, may be configured

easily for different perceptor suites and may be easily param-
eterized to be portable across different robot geometries and

locomotion devices. Two notable aspects of autonomous

navigation are a guarded motion behavior wherein the robot

may gracefully adjust its speed and direction near obstacles

without needing to come to a full stop and an obstacle avoid-

ance behavior wherein the robot may successfully navigate

around known obstacles in its environment. Guarded motion
and obstacle avoidance may work in synergy to create an

autonomous navigation capability that adapts to the robot’s

currently perceived environment. Moreover, the behavior

structure that governs autonomous navigation allows the

entire assembly of behaviors to be used not only for obstacles
but for other aspects of the environment that require careful

maneuvering such as Landmine detection.

The robot’s obstacle avoidance and navigation behaviors

are derived from a number of robot attributes that enable the
robot to avoid collisions and find paths through dense

obstacles. The reactive behaviors may be configured as nested

decision trees comprising rules which "fire" based on com-

binations of these perceptual abstractions.

The first level of behaviors, which may be referred to as

action primitives, provide the basic capabilities important to

most robot activity. The behavior framework enables these

primitives to be coupled and orchestrated to produce more

complex navigational behaviors. In other words, combining

action primitives may involve switching from one behavior to

another, subsuming the outputs of another behavior or layer-

ing multiple behaviors. For example, when encountering a

26
dense field of obstacles that constrain motion in several direc-

tions, the standard confluence of obstacle avoidance behav-
iors may give way to the high level navigational behavior

"Get-Unstuck," as is explained more fully below. This behav-

5 ior involves rules which, when activated in response to com-

binations of perceptual abstractions, switch between several

lower level behaviors including "Turn-till-head-is-clear" and

"Backout."

4.1.1. Guarded Motion Behavior

10 FIG. 14 is a software flow diagram illustrating components

of an algorithm for the guarded motion behavior 500 accord-
ing to embodiments of the present invention. Guarded motion

may fuse information from a variety of robot attributes and

hardware abstractions, such as, for example, motion

15 attributes, range attributes, and bump abstractions. The

guarded motion behavior 500 uses these attributes and

abstractions in each direction (i.e., front, left, right, and back)

around the robot to determine the distance to obstacles in all

directions around the robot.

2o The need for guarded motion has been well documented in

the literature regarding unmanned ground vehicles. A goal of

guarded motion is for the robot to be able to &rive at high
speeds, either in response to the operator or software directed

control through one of the other robot behaviors or cognitive

25 conduct modules, while maintaining a safe distance between
the vehicle and obstacles in its path. The conventional

approach usually involves calculating this safe distance as a

product of the robot’s speed. However, this means that the

deceleration and the distance from the obstacle at which the

3o robot will actually stop may vary based on the low-level

controller responsiveness of the low-level locomotor controls

and the physical attributes of the robot itself (e.g., wheels,

weight, etc.). This variation in stopping speed and distance

may contribute to confusion on the part of the operator who

35 may perceive inconsistency in the behavior of the robot.

The guarded motion behavior according to embodiments

of the present invention enables the robot to come to a stop at

a substantially precise, specified distance from an obstacle

regardless of the robot’s initial speed, its physical character-

4o istics, and the responsiveness of the low-level locomotor con-

trol schema. As a result, the robot can take initiative to avoid
collisions in a safe and consistent manner.

In general, the guarded motion behavior uses range sensing

(e.g., from laser, sonar, infrared, or combinations thereof) of

45 nearby obstacles to scale down its speed using an event hori-

zon calculation. The event horizon determines the maximum

speed the robot can safely travel and still come to a stop, if

needed, at a specified distance from the obstacle. By scaling

down the speed by many small increments, perhaps hundreds

5o of times per second, it is possible to ensure that regardless of

the commanded translational or rotational velocity, guarded
motion will stop the robot at substantially the same distance

from an obstacle. As an example, if the robot is being driven

near an obstacle rather than directly toward it, guarded motion

55 will not stop the robot, but may slow its speed according to the

event horizon calculation. This improves the operator’s abil-

ity to traverse cluttered areas and limits the potential for

operators to be frustrated by robot initiative.

The guarded motion algorithm is generally described for

6o one direction, however, in actuality it is executed for each

direction. In addition, it should be emphasized that the pro-

cess shown in FIG. 14 operates within the RIK framework of

the global timing loop. Therefore, the guarded motion behav-

ior 500 is re-entered, and executes again, for each timing loop.

65 To begin, decision block 510 determines if guarded motion

is enabled. If not, control transitions to the end of the guarded

motion behavior.

US 7,801,644 B2
27

If guarded motion is enabled, control transfers to decision

block 520 to test whether sensors indicate that the robot may

have bumped into an obstacle. The robot may include tactile

type sensors that detect contact with obstacles. If these sen-

sors are present, their hardware abstractions may be queried

to determine if they sense any contact. Ifa bump is sensed, it

is too late to perform guarded motion. As a result, operation

block 525 causes the robot to move in a direction opposite to

the bump at a reduced speed that is 20% of a predefined

maximum speed without turning, and then exits. This motion

is indicated in operation block 525 as no turn (i.e., T 0) and

a speed in the opposite direction (i.e., V -20%).

If no bump is detected, control transfers to decision block

530 where a resistance limit determination is performed. This

resistance limit measures impedance to motion that may be

incongruous with normal unimpeded motion. In this repre-

sentative embodiment, the resistance limit evaluates true if;
the wheel acceleration equals zero, the force on the wheels is

greater than zero, the robot has an inertial acceleration that is

less than 0.15, and the resulting impedance to motion is

greater than a predefined resistance limit. If this resistance

limit evaluation is true, operation block 535 halts motion in

the impeded direction, then exits. Of course, those of ordinary

skill in the art will recognize that this is a specific implemen-

tation for an embodiment with wheels and a specific inertial

acceleration threshold. Other embodiments, within the scope

of the present invention, may include different sensors and

thresholds to determine if motion is being impeded in any

given direction based on that embodiment’ s physical configu-

ration and method of locomotion.

If motion is not being impeded, control transfers to deci-

sion block 540 to determine if any obstacles are within an

event horizon. An event horizon is calculated as a predeter-

mined temporal threshold plus a speed adjustment. In other

words, obstacles inside of the event horizon are obstacles that
the robot may collide with at the present speed and direction.

Once again, this calculation is performed in all directions

around the robot. As a result, even if an obstacle is not directly

in the robot’s current path, which may include translational

and rotational movement, it may be close enough to create a

potential for a collision. As a result, the event horizon calcu-

lation may be used to decide whether the robot’s current

rotational and translational velocity will allow the robot time

to stop before encroaching the predetermined threshold dis-

tance. If there are no objects sensed within the event horizon,

there is no need to modify the robot’s current motion and the

algorithm exits.

If an obstacle is sensed within the event horizon, operation

block 550 begins a "safety glide" as part of the overall timing

loop to reduce the robot’s speed. As the robot’s speed is

reduced, the event horizon, proportional to that of the speed,

is reduced. If the reduction is sufficient, the next time through

the timing loop, the obstacle may no longer be within the

event horizon even though it may be closer to the robot. This

combination of the event horizon and timing loop enables

smooth deceleration because each loop iteration where the

event horizon calculation exceeds the safety threshold, the

speed of the robot (either translational, rotational, or both)

may be curtailed by a small percentage. This enables a smooth

slow down and also enables the robot to proceed at the fastest

speed that is safe. The new speed may be determined as a

combination of the current speed and a loop speed adjust-

ment. For example and not limitation,

New_speed current_speed*(0.75-1oop_speed_adjust). The

loop_speed_adjust variable may be modified to compensate

for how often the timing loop is executed and the desired

maximum rate of deceleration. Of course, those of ordinary

28
skill in the art will recognize that this is a specific implemen-

tation. While this implementation may encompass a large

array of robot configurations, other embodiments within the

scope of the present invention may include different scale

5 factors for determining the new speed based on a robot’s

tasks, locomotion methods, physical attributes, and the like.

Next, decision block 560 determines whether an obstacle is
within a danger zone. This may include a spatial measure-

ment wherein the range to the obstacle in a given direction is

10 less than a predetermined threshold. If not, there are likely no

obstacles in the danger zone and the process exits.

If an obstacle is detected in the danger zone, operation

block 570 stops motion in the current direction and sets a flag

indicating a motion obstruction, which may be used by other

15 attributes, behaviors or conduct.
As mentioned earlier, the guarded motion behavior 500

operates on a global timing loop. Consequently, the guarded

motion behavior 500 will be re-entered and the process

repeated on the next time tick of the global timing loop.

2o 4.1.2. Obstacle Avoidance Behavior

FIG. 15 is a software flow diagram illustrating components

of an algorithm for the obstacle voidance behavior 600 that

governs translational velocity of the robot according to

embodiments of the present invention. Similarly, FIG. 16 is a

25 software flow diagram illustrating components of an algo-
rithm for the obstacle voidance behavior that governs rota-

tional velocity 650 of the robot. Obstacle avoidance may fuse

information from a variety of robot attributes and hardware

abstractions, such as, for example, motion attributes, range

30 attributes, and bump abstractions. In addition, the obstacle

avoidance behavior may use information from other robot

behaviors such as, for example, the guarded motion behavior
and a get unstuck behavior. The obstacle avoidance behavior

uses these attributes, abstractions, and behaviors to determine
35 a translational velocity and a rotational velocity for the robot

such that it can safely avoid known obstacles.

In general, the obstacle avoidance behavior uses range

sensing (e.g., from laser, sonar, infrared, or combinations

thereof) of nearby obstacles to adapt its translational velocity

40 and rotation velocity using the event horizon determinations

explained earlier with respect to the guarded motion behavior.

As stated earlier, the obstacle avoidance behavior works with
the guarded motion behavior as building blocks for full

autonomous navigation. In addition, it should be emphasized

45 that the processes shown in FIGS. 15 and 16 operate within

the RIK framework of the global timing loop. Therefore, the

obstacle avoidance behavior is re-entered, and executes
again, for each timing loop.

To begin the translational velocity portion of FIG. 15,

50 decision block 602 determines if waypoint following is

enabled. If so, control transfers out of the obstacle avoidance
behavior to a waypoint following behavior, which is

explained more fully below.

If waypoint following is not enabled, control transfers to

55 decision block 604 to first test to see if the robot is blocked
directly in front. If so, control transfers to operation block 606

to set the robot’s translational speed to zero. Then, control

transfers out of the translational velocity behavior and into the

rotational velocity behavior so the robot can attempt to turn

60 around the object. This test at decision block 604 checks for

objects directly in front of the robot. To reiterate, the obstacle

avoidance behavior, like most behaviors and conducts in the
RIK, is temporally based. In other words, the robot is most

aware of its velocity and whether objects are within an event

65 horizon related to time until it may encounter an object. In the

case of being blocked in front, the robot may not be able to

gracefully slow down through the guarded motion behavior.

US 7,801,644 B2
29

Perhaps because the object simply appeared in front of the

robot, without an opportunity to follow typical slow down

procedures that may be used if an object is within an event

horizon. For example, the object may be another robot or a

human that has quickly moved in front of the robot so that the

guarded motion behavior has not had an opportunity to be

effective.

If nothing is blocking the robot in front, decision block 608

tests to see ifa detection behavior is in progress. A detection

behavior may be a behavior where the robot is using a sensor

in an attempt to find something. For example, the counter-
mine conduct is a detection behavior that is searching for

landmines. In these types of detection behaviors, obstacle

avoidance may want to approach much closer to objects, or

may want to approach objects with a much slower speed to

allow time for the detection function to operate. Thus, if a

detection behavior is active, operation block 610 sets a

desired speed variable based on detection parameters that

may be important. By way of example and not limitation, in

the case of the countermine conduct this desired speed may be

set as: Desired_Spee�Max_passover_rate-(Scan_ampli-

tude/Scan_Speed). In this countermine conduct example, the

Max_passover_rate may indicate a maximum desired speed

for passing over the landmine. This speed may be reduced by

other factors. For example, the (Scan_amplitude/

Scan_Speed) term reduces the desired speed based on a factor

of how fast the mine sensor sweeps an area. Thus, the Scan_

amplitude term defines a term of the extent of the scan sweep

and the Scan_Speed defines the rate at which the scan hap-

pens. For example, with a large Scan_amplitude and a small

Scan_Speed, the Desired_Speed will be reduced significantly

relative to the Max_passover_rate to generate a slow speed
for performing the scan. While countermine conduct is used

as an example of a detection behavior, those of ordinary skill
in the art will recognize that embodiments of the present

invention may include a wide variety of detection behaviors,

such as, for example, radiation detection, chemical detection,

and the like.

If a detection behavior is not in progress, decision block

612 tests to see ifa velocity limit is set. In some embodiments

of the invention, it may be possible for the operator to set a

velocity limit that the robot should not exceed, even if the

robot believes it may be able to safely go faster. For example,

if the operator is performing a detailed visual search, the robot
may be performing autonomous navigation, while the opera-

tor is controlling a camera. The operator may wish to keep the

robot going slow to have time to perform the visual search.

Ifa velocity limit is set, operation block 614 sets the desired

speed variable relative to the velocity limit. The equation

illustrated in operation block 614 is a representative equation

that may be used. The 0.1 term is a term used to ensure that the

robot continues to make very slow progress, which may be

useful to many of the robot attributes, behaviors, and conduct.

In this equation, the Speed_Factor term is a number from one

to ten, which may be set by other software modules, for

example, the guarded motion behavior, to indicate a relative

speed at which the robot should proceed. Thus, the desired

speed is set as a fractional amount (between zero and one in

0.1 increments) of the Max_Limit_Speed.

If a velocity limit is not set, operation block 616 sets the

desired speed variable relative to the maximum speed set for

the robot (i.e., Max_Speed) with an equation similar to that

for operation block 614 except Max_Speed is used rather than

Max_Limit_Speed.

After the desired speed variable is set by block 610,614, or

616, decision block 618 tests to see if anything is within the

event horizon. This test may be based on the robot’s physical

3O
dimensions, including protrusions from the robot such as an

arm, relative to the robot’s current speed. As an example using

an arm extension, something inside the event horizon may be

determined by the equation:

MinFront Range<l.0+Arm Extension+(1.75*Abs
(Current Velocity))

Where the Min_Front_Range indicates a range to an

obstacle in front, 1.0 is a safety factor, Arm_Extension indi-

10 cates the distance beyond the robot that the arm currently

extends, and Current_Velocity indicates the robot’s current

translational velocity.

If there is something detected within the event horizon,

operation block 620 sets the current speed based on the dis-

15 tance to the obstacle. Thus, the example equation in block 620
sets the speed based on the range to the object less a Forward_

Threshold set as a safety factor. With this speed, guarded

motion has an opportunity to be effective and the speed may

be reduced further on the next iteration of the timing loop if

2o the object is still within the event horizon. After setting the
speed, control transfers out of the translational velocity

behavior, and into the rotational velocity behavior.

If there is nothing detected within the event horizon, opera-

tion block 622 sets the robot’s current speed to the desired

25 speed variable that was set previously by operation block 614,
616, or 618. After setting the speed, control transfers out of

the translational velocity behavior 600, and into the rotational

velocity 650.

FIG. 16 illustrates a representative software flow diagram

3o illustrating components of an algorithm for the obstacle void-
ance behavior that governs rotational velocity of the robot. To

begin the rotational velocity behavior of FIG. 16, decision

block 652 determines ifwaypoint following is enabled. If so,

control transfers to decision block 654 to determine if the

35 angle to a target exceeds a predefined threshold. If so, control
transfers to decision block 656 to determine if the robot is

blocked in the waypoint direction.

At decisionblock 658, the process checks to see if the robot

is blocked in front. If so, the process performs a series of

4o checks to see where other obstacles may be to determine a
desired rotational velocity and direction. This obstacle check-

ing process begins with decision block 660 testing to see if the

robot is blocked on the left side. If the robot is blocked on the

left side, and also in front, operation block 662 sets a new

45 value for a turn velocity to the right. In the representative
embodiment illustrated in FIG. 16 a positive rotational veloc-

ity is defined as a turn to the left and a negative rotational

velocity is defined as a turn to the right. Thus, generally,

Turn_left is a positive value indicating a rotational velocity to

s0 the left and Turn_right is a negative value indicating a rota-
tional velocity to the right. Thus, operation block 662 reduces

the rotational velocity in the current direction by about one

half plus a small offset used to ensure that the rotational

velocity does not reach zero. After setting the new rotation

55 velocity, the process exits.

If the robot is not blocked on the left, decision block 664
tests to see if the robot is blocked on the right. If so, operation

block 666 sets a new value for a turn velocity to the right

similar to that velocity setting in operation block 662. In other

6o words, set the rotational velocity to the left to about one half
plus a small offset used to ensure that the rotational velocity

does not reach zero. After setting the new rotation velocity,

the process exits.

If the robot is blocked in the front, but not on the left or
65 right, the process then decides which way to turn to get around

the blockage by checking to see whether the nearest obstacle

in a measurable range is to the right or left and adjusting the

US 7,801,644 B2
31

rotational velocity to be away from the obstacle. Operation

block 668 checks to see if the nearest obstacle is to the left. If

so, operation block 670 sets the rotational velocity to the right

(i.e., away from the obstacle) at a velocity of 30% of a maxi-

mum defined rotational velocity. If the nearest obstacle is not

to the left, operation block 672 sets the rotational velocity to

the left at a velocity of 30% of a maximum defined rotational

velocity. After setting the new rotation velocity by either

operation block 670 or 672, the process exits.

If the robot was not blocked in front, based on decision

block 658, then decision block 674 performs a "threading the
needle process." This starts with decision block 674 deter-

mining a range to obstacles that may still be in front of the

robot but not directly blocking the robot. To do this, decision

block 674 tests to see if Min_Front_Range is greater than two
times a predefined threshold for the front direction, and to see

if Min Narrow_Front is greater than two times the robot’s

length. If both these tests are true, it may be relatively clear in

front and the process decides to reduce the rotational velocity

in the current direction to make the direction more straight

ahead until the next global timing loop. Therefore, decision

block 676 tests to see if the current rotational direction is left.

If so, decision block 678 tests to see if the magnitude of the

left rotational velocity is greater than twice a turn threshold. If

so, operation block 680 reduces the rotational velocity in the 25

left direction by one half, and the process exits. If the current

rotational direction is not left, decision block 682 tests to see
if the magnitude of the right rotational velocity is greater than

twice a turn threshold. If so, operation block 684 reduces the

rotational velocity in the right direction by one half, and the 3o

process exits.

If decision block 674, 678, or 682 evaluates false, decision
block 690 tests to see if anything is currently within the event

horizon.
This test may be based on the robot’s physical dimensions,

including protrusions from the robot such as an arm, relative

to the robot’s current speed. In addition, this test is likely the

same as the event horizon described above for the transla-

tional velocity when discussing decision block 618 on FIG.

15. In other words, is the Minimum_Front_Range less than an

Event_Range? Wherein the Event_Range 1.0+Arm_Exten-

sion+(1.75 *Abs (Current_Velocity)).

If there is nothing within the event horizon (i.e., decision

block 690 evaluates false), there is likely no need to change

the current rotational velocity so the process exits. If there is 45

something within the event horizon, but not within the thread-

ing the needle process or blocking the robot in front, the

rotational velocity may be adjusted at a more gradual rate.

Thus, if decision block 690 evaluates true, decision block 692
tests to see if the closest object is on the left side. If so, 5o

operation block 694 sets a new rotational velocity to the right.

If the closest object is not on the left, operation block 696 sets

a new rotational velocity to the left. The rotational velocity

that is set in operation blocks 694 and 696 is similar except for

direction. In this representative embodiment, the rotational 55

velocity may be set as a function of the Event Range from the

event horizon test of decision block 690. Thus, the rotational
velocity may be set as:

32
4.2. Get Unstuck Behavior

A get unstuck behavior 700, as illustrated in FIG. 17,

includes significant robot initiative to extricate itself from the

stuck position with little or no help from the operator. Some-
5 times, when a robot is operating under its own initiative, or

even under operator control, the robot may get stuck and have

difficulty getting free from that position. Often times, the

operator may have limited understanding of the robot’s posi-

10
tion relative to the robot’s understanding with its wide variety

ofperceptors. In general, the get unstuck behavior 700 may

use range sensing (e.g., from laser, sonar, infrared, or combi-

nations thereof) to determine nearby obstacles and their posi-

tion relative to the robot.

15 The get unstuck behavior 700 begins at decision block 710

by determining if the current path is blocked. This blocked

situation may be defined as an obstacle present in front, on the

front-right side, and on the front-left side. If the path is

blocked, control transfers to operation block 740, which is
2o explained below. For an example, and using the range defini-

tions defined above under the description of the range

attribute, a blocked path may be defined by the Boolean

equation:

Blocked =
((fightin front < (robot->forward thresh + 0.2)) II
FRONTBLOCKED) &&

(1 front < (robot->forward thresh* 2)) &&
(rfront < (robot->forward thresh * 2)) &&
(left front < (robot->forward thresh * 2)) &&
(rightfront < (robot->forward thresh * 2))

Wherein: (robot->forward_thresh) is a predetermined
35

threshold parameter, that may be robot specific, to define a

safety distance, or maneuverability distance, away from the

robot.

If the path is not blocked, decision block 720 determines if

4o forward motion and turning motion is obstructed. If motion is

obstructed, control transfers to operation block 740, which is

explained below. For an example, this motion obstruction

may be determined by the Boolean equation:

Obstructed nrution =

(FR LEFT BLOCKED II RRIGHT BLOCKED) &&
(FR RIGHTBLOCKED II L LEFTBLOCKED) &&
FRONTBLOCKED

If motion is not obstructed, decision block 730 determines
if the robot is in a box canyon. If the robot is not in a box

canyon, the get unstuck behavior exits because it appears the

robot is not in a stuck situation. If the robot is in a box canyon,

control transfers to operation block 740. For an example, this

box canyon situation may be defined by the Boolean equa-

tion:

(EventRange-Min FrontRange)/4.
6O

After setting the rotational velocity in either operation

block 694 or 696, the process exits.

As mentioned earlier, the obstacle avoidance behavior 600
operates on the global timing loop. Consequently, both the

translational velocity and rotational velocity may be adjusted 65

again on the next time tick of the global timing loop, allowing

for relatively quick periodic adjustments to the velocities.

Boxcanyon =
(rightin front < (robot->forward thresh + .2)) &&
(rightfront < (robot->forward thresh * 2.0)) &&

(left front < (robot->forward thresh * 2.0)) &&
((right side + left side) < (robot->turn thresh * 3.0)) &&

(BACK BLOCKED=0)

US 7,801,644 B2
33

Wherein: (robot->turn_thresh) is a predetermined thresh-
old parameter, which may be robot specific, to define a
maneuverability distance that enables the robot to turn
around.

Once the determination has been made that the robot may
be stuck, operation block 740 begins the process of attempt-
ing to get unstuck. Operation block 740 performs a back-out
behavior. This back-out behavior causes the robot to backup
from its present position while following the contours of
obstacles near the rear sides of the robot. In general, the
back-out behavior uses range sensing (e.g., from laser, sonar,
infrared, or combinations thereof) of nearby obstacles near
the rear sides to determine distance to the obstacles and pro-
vide assistance in following the contours of the obstacles.
However, the back-out behavior may also include many robot
attributes, including perception, position, bounding shape,
and motion, to enable the robot to turn and back up while
continuously responding to nearby obstacles. Using this
fusion of attributes, the back-out behavior doesn’t merely
back the robot up, but rather allows the robot to closely follow
the contours of whatever obstacles are around the robot.

For example movements, the robot may attempt to equalize
the distance between obstacles on both sides, keep a substan-
tially fixed distance from obstacles on the right side, or keep
a substantially fixed distance between obstacles on the right
side. As the back-out behavior progresses, decision block 780
determines if there is sufficient space on a side to perform a
maneuver other than backing out. If there is not sufficient
space, control transfers back to operation block 740 to con-
tinue the back-out behavior. If there is sufficient space on a
side, control transfers to operation block 760. As an example,
the sufficient space on a side decision may be defined by the
Boolean equation:

Space on side=space on leflllspace on right, wherein:
Space on left=

(1 front > (robot->forward thresh + .2)) &&
(turn left > (robot->arm length + robot->tttrn thresh + .2)) &&
(turn left >= turn right)

Space onright =

(rfront > (robot->forward thresh + .2)) &&
(turn right > (robot->aml length + robot->turn thresh + .2)) &&
(turn right >= tttrn left))

Once sufficient space has been perceived on the right or
left, operation block 760 performs a turn-until-head-is-clear
behavior. This behavior causes the robot to rotate in the suf-
ficient space direction while avoiding obstacles on the front
side. As the turn-until-head-is-clear behavior progresses,
decision block 770 determines if, and when, the head is actu-
ally clear. If the head is not clear, control transfers back to the
operation block 760 to continue the turn-until-head-is-clear
behavior. If the head is clear, control transfers to operation
block 760.

Once the head is clear, decision block 780 determines
whether an acceptable egress route has been found. This
egress route may be defined as an acceptable window of open
space that exists for the robot to move forward. To avoid
potential cyclical behavior, the acceptable window may be
adjusted such that the robot does not head back toward the
blocked path or box canyon. If an acceptable egress route has
not been found, control transfers back to operation block 740
to attempt the back-out behavior again. If an acceptable

34
egress route is found, the unstuck behavior exits. As a specific
example, the window may be defined by the equation:

window 1.25 meters-(seconds-in-behavior/10.0); and
the egress route may be defined as tree if the

window<(robot->forward tkresh*2.5).

As with the guarded motion behavior, the get-unstuck

behavior 700 operates on a global timing loop. Consequently,
the get-unstuck behavior 700 will be re-entered and the pro-

10 cess repeated on the next time tick.

4.3. Real-Time Occupancy Change Analysis

FIG. 18 is a software flow diagram illustrating representa-

tive components of an algorithm for performing a real-time

occupancy change analysis behavior 800. Despite the much
15 discussedpotential for robots to play a critical role in security

applications, the reality is that many human presence and

motion tracking techniques require that the sensor used in

tracking be stationary, removing the possibility for placement

on a mobile robot platform. In addition, there is a need to
2o determine substantially accurate positions for changes to rec-

ognized environmental features within a map. In other words,

it may not be enough to know that something has moved or

even the direction of movement. For effective change detec-

tion, a system should provide a substantially accurate position
25 of the new location.

The Real-Time Occupancy Change Analyzer (ROCA)

algorithm compares the state of the environment to its under-

standing of the world and reports to an operator, or supporting

30
robotic sensor, the position of and the vector to any change in

the environment. The ROCA robot behavior 800 includes

laser-based tracking and positioning capability that enables

the robot to precisely locate and track static and mobile fea-

tures of the environment using a change detection algorithm

that continuously compares current laser scans to an occu-
35

pancy grid map. Depending on the laser’s range, the ROCA

system may be used to detect changes up to 80 meters from

the current position of the laser range finder. The occupancy

grid may be given a priori by an operator, built on-the-fly by

the robot as it moves through its environment, or built by a
40

combination of robot and operator collaboration. Changes in

the occupancy grid may be reported in near real-time to

support a number of tracking capabilities, such as camera

tracking or a robotic follow capability wherein one or more

robots are sent to the map location of the most recent change.
45

Yet another possible use for the ROCA behavior is for target

acquisition.

A notable aspect of the ROCA behavior is that rather than

only providing a vector to the detected change, it provides the

50 actual X, Y position of the change. Furthermore, the ROCA
behavior can operate "on-the-move" meaning that unlike

most human presence detection systems which must be sta-

tionary to work properly, it can detect changes in the features

of the environment around it apart from of its own motion.

55 This position identification and on-the-move capability
enable tracking systems to predict future movement of the

target and effectively search for a target even if it becomes
occluded.

In general, once the robot has identified a change, the

6o change may be processed by several algorithms to filter the

change data to remove noise and cluster the possible changes.

Of the clustered changes identified, the largest continuous

cluster of detected changes (i.e., "hits") may be defined as

locations of a change (e.g., possible intruder) within either the

65 global coordinate space, as a vector from the current pose of

the robot, other useful coordinate systems, or combinations

thereof. This information then may be communicated to other

US 7,801,644 B2
35

robot attributes, robot behaviors, and cognitive conduct
within the RIK as well as to other robots or an operator on a

remote system.

As discussed earlier when discussing the range attribute, a
variety of coordinate systems may be in use by the robot and

an operator. By way of example, a local coordinate system
may be defined by an operator relative to a space of interest

(e.g., a building) or a world coordinate system defined by

sensors such as a GPS unit, an iGPS unit, a compass, an

altimeter, and the like. A robot coordinate system may be

defined in Cartesian coordinates relative to the robot’s orien-

tation such that, for example, the X-axis is to the right, the

Y-axis is straight ahead, and the Z-axis is up. Another robot

coordinate system may be cylindrical coordinates with a

range, angle, and height relative to the robot’s current orien-

tation.

The software flow diagram shown in FIG. 18 includes

representative components of an algorithm for performing the
ROCA behavior 800. As stated earlier, the ROCA process 800

assumes that at least some form of occupancy grid has been

established. However, due to the global timing loop execution

model, details, probabilities, and new frontiers of the occu-

pancy grid may be built in parallel with the ROCA process

800. The ROCA process 800 begins at decision block 810 by

testing to determine if the robot includes lasers, the laser data

is valid, an occupancy grid is available, and the ROCA pro-

cess is enabled. If not, the ROCA process 800 ends.

If decision block 810 evaluates true, process block 820

performs a new laser scan, which includes obtaining a raw

laser scan, calculating world coordinates for data included in

the raw laser scan, and converting the world coordinates to the

current occupancy grid. The raw laser scan includes an array

of data points from one or more laser sweeps with range data

to objects encountered by the laser scan at various points

along the laser sweep. Using the present occupancy grid and

present robot pose, the array of range data may be converted

to an occupancy grid (referred to as laser-return occupancy

grid) similar to the present occupancy grid map.

Next, decision block 830 tests to see if the current element
of the array of range data shows an occupancy element that is

the same as the occupancy element for the occupancy grid

map. If so, control passes to decision block 860 at the bottom

of the range data processing loop, which is discussed later.

If there is a difference between the laser-return occupancy

cell and the corresponding cell for the occupancy grid map,

decision block 840 tests the laser-return occupancy cell to see

if it is part of an existing change occurrence. In other words,

if this cell is adjacent to another cell that was flagged as

containing a change, it may be part of the same change. This

may occur, for example, for an intruder, that is large enough

to be present in more than one occupancy grid. Of course, this

test may vary depending on, for example, the granularity of

the occupancy grid, accuracy of the laser scans, and size of the

objects of concern. If decision block 840 evaluates true,

operation block 842 clusters this presently evaluated change

with other change occurrences that may be adjacent to this

change. Then control will transfer to operation block 848.

If decision block 840 evaluates false, the presently evalu-

ated change is likely due to a new change from a different

object. As a result, operation block 844 increments a change

occurrence counter to indicate that there may be an additional

change in the occupancy grid.

Operation block 848 records the current change occur-

rences and change clusters whether from an existing cluster or

a new cluster, then control transfers to decision block 850.
Decision block 850 tests to see if the change occurrence

counter is still below a predetermined threshold. If there are a

36
large number of changes, the changes may be due to inaccu-

racies in the robot’s current pose estimate. For example, if the

pose estimate indicates that the robot has turned two degrees

to the left, but in reality, the robot has turned five degrees to

5 the left, there may be a large number of differences between

the laser-return occupancy grid and the occupancy grid map.

These large differences may be caused by the inaccuracies in

the pose estimate, which would cause inaccuracies in the

conversion of the laser scans to the laser-return occupancy

10 grid. In other words, skew in the alignment of the laser scan

onto the occupancy grid map due to errors in the robot’ s pose

estimation, from rotation or translation, may cause a large

number of differences. If this is the case, control transfers to
operation block 880 to update the position abstraction in an

15 attempt to get a more accurate pose estimate. After receiving

a new pose estimate from the position abstraction, the ROCA

process begins again at decision block 810.

If decision block 850 evaluates true or decision block 860

was entered from decisionblock 830, decisionblock 860 tests
20 to see if there are more data points in the laser scan to process.

If so, control transfers back to decision block 830 to process

the next element in the laser scan array.

If decision block 850 evaluates false, all the data in the laser
scan array has been processed and decision block 870 again

25 tests to see if the change occurrence counter is still below a

predetermined threshold. As discussed earlier, if the change

occurrence counter is not below the predetermined threshold,

operation block 880 updates the position abstraction in an

attempt to get a more accurate pose estimate, the ROCA

30 process begins again at decision block 810.

If decision block 870 evaluates true, then processing for

this laser scan is complete and operation block 890 updates a

change vector and information regarding change occurrences

and change clusters is made available to other robot attributes,

35 robot behaviors, and cognitive conduct modules.

By way of example and not limitation, the ROCA results

may be sent to the user interface, used by a tracking behavior,

and combinations thereof. For example, ROCA results may

be used with additional geometric calculations to pan a visual

40 camera, a thermal camera, or combination thereof to fixate on
one or more of the identified changes. Similarly, a manipula-

tor, such as, for example, a weapon may be panned to acquire

a target identified as one of the changes. If the detected change

is moving, tracking position updates may arrive in near real
45 time (the actual rate may depend on the speed and latency of

the communication channel), allowing various sensors to

continuously track the target. If desired, the robot may also

continuously move to the new location identified by the

change detection system to provide a mobile tracking capa-

50 bility.

When coupled with an operator interface, the tracked enti-

ty’s movements may be indicated to an operator in near real

time and visual data from a camera can be used by the opera-

tor to identify the tracked entity.

55 As with other behaviors, the ROCA behavior 800 operates

on the global timing loop. Consequently, the ROCA behavior

800 will be re-entered and the process repeated on the next

time tick.

4.4. Virtual Rail Conduct

6o One representative cognitive conduct module enabled by

the RIK and GRA is a virtual rail system for robots. Many

industrial and research applications involve moving a vehicle

or target at varying speeds along a designated path. There is a

need to follow physical paths repeatably either for purposes

65 of transport, security applications or in order to accurately

record and analyze information such as component wear and

tear (e.g., automotive testing), sensor responsiveness (e.g.,

US 7,801,644 B2
37

sensor characterization), or environmental data (e.g., moni-

toring). Such applications require both accuracy and repeat-

ability.

Conventional practice methods have required the building

of physical or actual tracks along which a vehicle can be

moved. Drawbacks of such an approach include the signifi-

cant limitations of the configuration of paths that may be

created and the feasibility of building permanent tracks. Also,

for characterization and other readily modifiable tasks, recon-

figuration of physical track networks quickly becomes cost

and time prohibitive.

Although it has long been known that physical tracks or

rails are problematic, mobile robots have not had a means by

which to maintain accurate positioning apart from such fixed-

track methods. For some tasks, absolute positioning can be

achieved by various instrumented solutions such as visual,

laser-based tracking systems or radio frequency positioning

systems that triangulate distance based on beacons placed in

the environment. Each of these systems is costly to imple-

ment; in fact, the cost for purchasing and installing such a

positioning system is often more than the total cost of the

robot itself.

Moreover, the utility of visual or laser tracking systems is

limited by occlusions within the environment. For example,

RF beacons are only appropriate for environments where the
beacons can be fixed in a static, known location. The physical

properties of a remote sensing environment are constantly

changing. In fact, walls are often shifted within the building to

model different operational environments. Accordingly,

absolute positioning is sometimes less feasible, impractical

and frequently impossible to implement. Therefore, there is a

need to provide a method and system for configuring a virtual

track or rail system for use by a robot.

The present invention includes various embodiments

including a robot system configured to follow pre-planned

routes forming a "virtual rail" or "virtual track" and may

include defined speeds for traversing various segments of the

pre-planned routes. One application of a virtual rail system

includes the repeated testing of a sensor or system to charac-

terize the device. Due to the accuracy and repeatability of the

virtual rail system, sensors and systems may be tested with

data collected that conforms to a "sufficient comparable data"

standard. Such a data collection standard requires acceptance

of data only when consistent and comparable data is gener-

ated in response to repeatable tests carried out under the same

conditions. For example, the virtual rail system may be used

in a laboratory, research facility, or manufacturing environ-

ment to characterize a vast number of sensors. Accordingly,

characterization tests that may previously have required a

significant amount of time for execution may now be charac-

terized in a fraction of the time.

Sensor characterization is only one example of a specific

application. Other applications include automated mail carts

and other delivery systems, security and surveillance sys-

tems, manufacturing and monitoring systems. In particular,

the technology is useful for parts handling, as well as replace-

ment of current railed robotic systems, especially within the

manufacturing and defense industries.

FIG. 19 is a block diagram of a robot system for imple-

menting a virtual track for a robot, in accordance with an

embodiment of the present invention. A robot system 2100

includes a robot 2102 and a control generation system 2104.

In robot system 2100, a user interfaces with control genera-

tion system 2104 to implement a virtual track for tracking or

following by the robot 2102. Robot 2102 is responsive to

programming commands generated by control the generation

system 2104 and further conveys feedback and sensor infor-

38
mation to control generation system 2104 over communica-

tion interface 2106. A user, by interfacing through a user

interface of control generation system 2104, designates a

desired path comprised of one or more representative path
5 segments. In the various embodiments of the present inven-

tion, robot 2102 is configured or programmed to follow a

virtual track or a virtual rail similar in resulting operation to a

robot following a fixed track or physical rail. In the various

embodiments of the present invention, however, the short-
10 comings of a fixed physical rail configuration are overcome

by enabling the formation of a virtual track or rail system

without the appreciated physical and economical limitations

associated therewith.

FIG. 20 illustrates a user interface for generating a desired
15 path representative of a virtual track or virtual rail, in accor-

dance with an embodiment of the present invention. A user

interface 2120 operating on a conventional computer or other

hosting interface provides an environment wherein a user

may configure and readily reconfigure a virtual track or rail
20 configuration for execution and following by a robot.

The user interface 2120 provides an environment for the

generation of a desired path comprised of at least one segment

representative of the virtual track for the robot. The user

interface 2120 may take the form of a Computer Aided
25

Design (CAD) program for the formation of the desired path.

The desired path, comprised of one or more segments repre-

sentative of the virtual track for the robot, may take the form

of lines, arcs or any of a number of design shapes known by

30
those of ordinary skill in the art, and are collectively referred

to herein as "segments." By way of example, a desired path

2122 includes a plurality of line segments 2124-2132 with

line segment 2132 illustrated as being selected. Line seg-

ments 2124-2132 may be generated using any of a number of

35
commercially available CAD systems that may generate file

formats that are readily convertible and parsable. By way of

example and not limitation, the CAD file format may be

directly saved or converted into a file format such as Drawing

Exchange Format (.dxt).

40 FIG. 21 is a process diagram for configuring the desired
path into a waypoint file for implementing a virtual track or

rail and for execution by a robot, in accordance with an

embodiment of the present invention. A virtual track or rail is

specified in the form of a desired path 2122 (FIG. 20) includ-

45 ing at least one segment representative of the virtual track as
input through the user interface 2120 (FIG. 20). The graphical

input of the desired path is converted or stored in a form that

is capable of further processing or manipulation by the con-

trol generation system 2104 (FIG. 19) which generates pro-

50 gramming commands destined for execution by robot 2102
(FIG. 19). By way of example and not limitation, the stored

format for the desired path of the one or more segments

representative of the virtual track may be a drawing file 2202.

The format of drawing file 2202, among others, includes file

55 formats (e.g., .dxf) configured to represent various line seg-
ments, arcs and other drawing elements as expressed by a user

through a graphical user interface 2120 (FIG. 20).

A path plan process 2204 receives the CAD-generated

drawing file 2202 and processes the one or more segments of

6o the desired path into a waypoint file 2206 that includes
instructions that are capable of being executed by robot 2102

(FIG. 19). The processing of drawing file 2202 includes the

assignment process 2208 of input velocities 2200 to the seg-

ments or vertices of the desired path segments or elements. A

65 verification process 2210 analyzes the desired input veloci-

ties 2200 by comparing the velocities with the mobility capa-

bilities of robot 2102 (FIG. 19). Discrepancies or incompat-

US 7,801,644 B2
39

ibilities between the desired path and input velocities as
compared with the execution capabilities of robot 2102 are

reported and/or resolved.

Path plan process 2204 further includes a waypoint gen-

eration process 2212 for generating waypoint file 2206 that

precipitates from the original drawing file 2202 undergoing
assignment process 2208, followed by verification process

2210 for determining the compatibilities of the desired path

and the robot capabilities. Waypoint file 2206 includes a

listing of waypoints as well as any modified velocities 2214

which may be different than the originally specified input

velocities 2200.

FIG. 22 illustrates a user interface for further processing

the desired path into a program for execution by a robot, in

accordance with an embodiment of the present invention. A
path plan process user interface 2420 provides an environ-

ment for the rendering of a previously defined drawing file

2202 (FIG. 21) and further enables the generation of a way-

point file 2206 (FIG. 21) through the assignment of start and

end points 2440, 2442 to the desired path 2422 as well as the
association of velocities with such paths. The desired path

2422, comprised of one or more segments 2424-2432 repre-

sentative of the virtual track for the robot, thereafter includes
assigned motion qualities and characteristics including start

and end points 2440, 2442 to the desired path 2442 as well as
assigned input velocities 2200 (FIG. 21) or speeds that should

be executed by robot 2102.

As stated, the one or more line segments 2424-2432 with

the assigned motion qualities is compared or verified through

verification process 2210 (FIG. 21) with the performance

capabilities of a specific robot 2102 which compares the

requested desired path with mobility limitations and capabili-

ties of robot 2102. In one embodiment of the present inven-

tion, an algorithm analyzes the path including traversal of the
segments at various speeds, including velocity transitions

between line and arc segments and determines the turn gain to

insure minimal oscillations during traversal of the line seg-

ments. Furthermore, the algorithm is capable of carving

smooth arcs by adjusting the turn gain based on an analysis of

the arc shape and the commanded forward velocity. This

algorithm provides the ability to arbitrate between waypoint

following and motor schema control as speed and point types

change.

After resolution of any inconsistencies or incompatibili-

ties, a waypoint file 2206 (FIG. 21) is generated by path plan

process 2204 with waypoint file 2206 (FIG. 21) being trans-

ferred over communication interface 2106 (FIG. 19) to robot
2102 (FIG. 19) for execution. Robot 2102, executing the

various waypoints and specified velocities 2214 (FIG. 21)

associated therewith, traces out or follows a virtual track or
virtual rail as specified and/or modified by a user through the

control generation system 2104 (FIG. 19).

The user interface 2420 for controlling path plan process

2204 (FIG. 21) enables a user to generate commands in the

form of waypoint file 2206 (FIG. 21) for execution by robot

2102, which results in the formation of a virtual rail or track
that is followed or traced by robot 2102. The virtual track or

rail may be created from an abstraction or may be generated

with reference to an available map or other boundary desig-

nations of the operating environment. Furthermore, accurate

positioning of the robot 2102 (FIG. 19) may be maintained by

application of Markov localization techniques that may com-
bat problems such as odometry drift. Generation ofwaypoint

file 2206 (FIG. 21) allows a robot 2102 (FIG. 19), given

accurate position data, to traverse a trace of arcs and lines at

various speeds. The various embodiments of the present

invention may utilize various mapping or localization tech-

4O
niques including positioning systems such as indoor GPS,
outdoor GPS and DGPS, a theodolite system as well as others

which may be devised in the future.

As stated in FIG. 22, desired path 2422 includes a plurality
5 of line segments 2424-2432. Through the use of the user

interface 2420, start point 2440 and end point 2442 may be

selected with each individual line segment 2424-2432 being

individually selected thereby allowing the association of a

velocity therewith. By way of example, line segment 2432 is
10 illustrated as being selected with a representative speed of 0.5

meters per second being associated therewith. The path plan

process 2204 (FIG. 21) through user interface 2420 uses the

properties of each segment within drawing file 2202 (FIG. 21)

to spatially locate each segment (e.g., line or arc) and then
15 creates a default path based on the initial order of segments

found in the drawing file 2202.

Path plan process 2204 (FIG. 21), through user interface

2420, can be used to manipulate various properties of the

initial desired path 2422. For example, when segment 2432 is
2o selected, the segment is highlighted in the user interface 2420.

Once a segment is highlighted, its properties are displayed

and can be edited, if desired. The order of segments can be

changed, for example, either by using the "Move Up" and

"Move Down" buttons or by selecting and dragging a seg-
25 ment to its new position. Each segment can be included or

excluded, for example, from the path by appropriately mark-

ing the "Include this entity in the path" checkbox. This allows

additional features that are not part of the path to be included

in the drawing file without the requirement that they be a part
30 of the virtual track or rail. Additional input boxes may be

provided to set the initial speed, the final speed or constant

acceleration, and provide for comments for each segment.

Once motion characteristics, such as velocity, have been

associated with each of the line segments 2424-2432, other
35

processing may be performed such as an estimation of run

time as well as verification of velocity transitions 2210 (FIG.

21). Once velocities have been associated therewith and veri-
fication of compatibility with the capabilities of the target

robot have been performed, a waypoint file 2206 (FIG. 21)
40

may be generated by activating generate waypoint process

2212 (FIG. 21) within the user interface 2420.

FIG. 23 is a diagram illustrating transformation according
to path plan process 2204 (FIG. 21) from a drawing file to a

45 waypoint file, in accordance with an embodiment of the
present invention. A drawing file 2202 as received and gen-

erated in a user interface 2120 is transformed as stated above,
with respect to FIG. 21, from a drawing file 2202 to a way-

point file 2206 according to path plan process 2204 (FIG. 21).

5o As stated, drawing file 2202 is a limited expression of graphi-
cal segments and must be augmented through path plan pro-

cess 2204 to include, among other things, motion character-

istics such as velocities as well as execution ordering of the

segments. Additionally, for the generation of waypoint file

55 2206, the information in drawing file 2202 also undergoes
verifications to determine if input velocities 2200 (FIG. 21)

are within the capabilities of the robot.

By way of example and not limitation, waypoint file 2206
assumes one or more formats, an example of which is illus-

6o trated with respect to FIG. 23. Waypoint file 2206 may

include an estimated traversal time 2402 identifying a sum-

mation of the traversal times of each segment of the virtual

track. By way of example, waypoint file 2206 includes a

listing of ordered vertices identifying the waypoints 2404-

65 2414 fortraversalbytherobot2102 (FIG. 19). Eachwaypoint

2404-2414 includes a waypoint number indexed according to

order as previously described, X- andY-coordinate values, a

US 7,801,644 B2
41

velocity value, and an arc continuation flag for associating a

set ofwaypoints for short line segments that comprise an arc

traversal.

FIG. 24 is a functional block diagram of a control process

of a robot, in accordance with an embodiment of the present

invention. Robot control process 2300 executes a waypoint

file to trace-out or follow a virtual track or rail first defined and

processed within the control generation system 2104 (FIG.

19). Robot control process 2300 includes a localization pro-

cess 2302 wherein the robot processes environmental param-

eters including physical boundaries to determine a present

frame of reference for use in alignment or referencing the

virtual track or rail. Localization is a continuous process that

the robot uses to determine its present location with reference

to its internal map. For example, when the robot first starts
executing the waypoint file 2304, the robot’s start point is the

origin (0,0) with positive X in the forward direction for ref-

erencing the internal map. As the robot moves around, the

robot locates items in the operating environment and then

places those items in the robot’s internal map. As the robot

continues to move, the robot may encounter familiar features

with an expectation that the recognized features are located in
the same relative position. However, if the features have

moved relative to where the robot believes the features should

be, then the robot assumes that the robot may not be in the

right place on the internal map. The continual correction of

the robot’s position in the internal map may be described as

"localization."

The localization process 2302 of the robot allows the robot

to accurately and repeatedly trace the waypoints forming the

virtual rail or track. The waypoint navigation process 2306

responds to the localization process 2302 and sensor data

from sensor process 2310 to generate controls to the robot

motion process 2308. Additionally, the robot uses sensor data

from sensor process 2310 to determine surrounding features.

The robot control process 2300 does not need to necessarily

identify the composition or identity of the features, but only

the fact that they are part of the environment which forms

boundaries for the robot. Robot 2102 may utilize one or more

sensors for providing feedback to the localization process

2302. Sensors may include wheel measuring devices, laser

sensors, ultrasonic sensors, and the like.
Waypoint navigation process 2306 generates commands or

control signals to a robot motion process 2308. Robot motion

process 2308 generates controls to actuators for generating

motion, rotation, etc., as well as velocities associated there-
with. Waypoint navigation process 2306 further receives

from sensor process 2310 sensor information in the form of

feedback for determining when traversal of one or more seg-

ments of the virtual rail has been accomplished. Sensor pro-

cess 2310 may also provide information to waypoint naviga-

tion process 2306 in the form of changes to environmental

parameters which enables waypoint navigation process 2306

to protect or guard against unforeseen changes to the envi-

ronment. Additional details with respect to waypoint naviga-

tion are described below with respect to FIGS. 26-28.

FIG. 25 is a flow chart 2500 of a method for implementing

a virtual track for a robot, in accordance with an embodiment
of the present invention. An execution of a robot traversing a

virtual rail is initiated by a user developing a desired path for

the robot to follow using a drawing package to generate 2510

a drawing file.

As stated, a drawing file or other illustration of a desired

path is generated 2510 and includes at least one segment

representative of the virtual track to be configured for the
virtual track which the robot will traverse. Generation of a

desired path results in the creation of a specific file format

42
representing the illustrated segments of the desired path. The

file format, in one embodiment of the present invention, is

converted 2520 into a standardized file format, an example of

which is the .dxf format. Generation 2510 and converting

5 2520 steps may be accomplished through the use of one or

more applications which are made usable through a user

interface, such as user interface 2120 (FIG. 20).
Through path plan process 2204 (FIG. 21) and as further

illustrated with respect to a user interface 2420 (FIG. 22), the

10 drawing file 2202 (FIG. 23) is imported 2530 and start points

2440 (FIG. 22), endpoints 2442 (FIG. 22) and segment order-

ing may be assigned 2540 to the various segments of the

desired path 2422 (FIG. 22). Through verification process
2210 (FIG. 21), continuity may be checked or verified 2550

15 and input velocities 2200 (FIG. 21) may be assigned 2560 to

the various segments 2424-2432 (FIG. 22) of the desired path

2422 (FIG. 22). Further checking and reporting 2570 of

inconsistencies or incompatibilities may also be performed.

Once the desired path 2422 has been illustrated and start

2o and end points 2440, 2442, as well as velocities have been

associated therewith, as well as a successful completion of

verification processes, a waypoint list 2206 (FIG. 23) is gen-

erated 2580 and stored in a waypoint file. Upon completion of

the generation of waypoint file 2206 (FIG. 21) by control

25 generation system 2104 (FIG. 19), the waypoint file 2206 is

sent 2590 via a communication interface 2106 (FIG. 19) to a
robot 2102 (FIG. 19). Thereafter, robot 2102 may execute

2600 a first waypoint from waypoint file 2206 and subse-

quently execute 2610 a second and subsequent waypoint

3o using waypoint navigation process 2306 (FIG. 24).

4.5. Waypoint Following Behavior

FIGS. 26, 27, and 28 are software flow diagrams illustrat-

ing representative algorithms for performing waypoint fol-

lowing according to embodiments of the present invention.

35 The waypoints may come from an algorithm such as the

virtual robot rail system described above, interaction with an

operator, interaction with other robots, internally generated,

or combinations thereof. FIG. 26 illustrates components of a

handler algorithm for handling transitions between way-

4o points, FIG. 27 illustrates handling of translational velocities

during waypoint following, and FIG. 28 illustrates handling

of rotational velocities during waypoint following.

The waypoint handler, illustrated in FIG. 26, starts with

decision block 902 to test whether path planning is active and
45 the time since the achieving the last waypoint is greater than

a threshold. In the representative embodiment of FIG. 26, the

threshold is set at three seconds. If sufficient progress has not

been made toward a waypoint within the threshold, there may

be a barrier blocking the robot’s progress toward the way-

5o point. For example, perhaps a door was closed that the way-

point planning had assumed was open, or perhaps a new
obstacle was placed in the environment such that the robot

cannot find a way around the obstacle to achieve the next

waypoint. In these types of circumstances, it may be appro-

55 prate to plan a new path with a new waypoint list. Thus, if

path planning is active and the threshold is exceeded, opera-

tion block 904 performs a routine to delete the current way-

point list and plan a new waypoint list, then control transfers

to decision block 906.

6o If decision block 902 evaluates false, or operation block

904 completes, decision block 906 tests to see if the current

waypoint is defined as part of an arc. If the current waypoint

is part of an arc, operation block 908 sets a variable named

Waypoint_Radius as the current speed times one half of the

65 robot’s length. This Waypoint_Radius variable is used later as

a test threshold when determining how close the robot is to the

waypoint. If the current waypoint is not part of an arc, opera-

US 7,801,644 B2
43

tion block 910 sets Waypoint_Radius to one half the robot’s

length plus one half the length of the arm extension. Thus, the

waypoint radius is defined as the physical extent of the robot

from the Robot’s center.

With the Waypoint_Radius variable set, decision block 912

tests to see if the angle to the target waypoint is currently less
than 90 degrees to the left or right. If so, operation block 914

sets the range to the target as the closest range within plus or
minus 15 degrees of the current angle to the target. If the

waypoint is not less than 90 degrees away, operation block

916 sets the range to target as Min_Front_Distance, which, as

explained earlier, is the range to the nearest object within plus

or minus 90 degrees of the robot’s forward direction. The
current angle to the target defines the angle towards the target

relative to straight ahead. However, Range_To_Target defines

a range (i.e., distance) from the robot to an obstacle in the

direction of the waypoint.

After setting the Range_To_Target variable, decision block

918 tests to see if the distance to the current waypoint is less

than the waypoint radius defined previously. If so, the way-

point is considered to be achieved, so operation block 920

iterates to the next waypoint in the waypoint list, and the

process exits.

If decision block 918 evaluates false, a more specific test is

performed to see if the waypoint has been achieved. In some

instances, it may not be possible to actually place the center of

the robot over the waypoint. For example, the waypoint may

have been placed too close to a wall, or perhaps even behind

the wall. However, if the robot can get close enough, it may be

sufficient to say the waypoint has been achieved. Thus, if

decision block 922 evaluates true, operation block 920 iter-

ates to the next waypoint in the waypoint list, and the process

exits. However, if decision block 922 evaluates false the pro-

cess exits and continues on with the current waypoint.

A representative evaluation of a test for close enough to a

waypoint is illustrated in block 924. Of course, those of

ordinary skill in the art will recognize that other parameters,

distances, and decisions may be made within the scope of the

present invention to define whether a waypoint has been

achieved. In block 924, the first test checks to see if the
Range_to_Target variable is less than the arm extension plus

the larger of a forward threshold or a side threshold. If not,

there may still be room to move forward or rotate toward the

waypoint, so the process may exit and continue on with the

current waypoint. Otherwise, the second test checks to see if

the distance to the waypoint is less than the sum of the arm

extension and the robot length. If not, there may still be room

to move forward or rotate toward the waypoint, so the process

may exit and continue on with the current waypoint. Other-

wise, the third test checks to see if the distance to the closest
object on the front side of the robot (i.e., Min-Front_Dis-

tance) is less than the arm extension plus twice the forward

threshold. If not, there may still be room to move forward or

rotate toward the waypoint, so the process may exit and

continue on with the current waypoint. Otherwise, the final

check tests to see if the angle to the target is less than 45

degrees or the range to the nearest obstacle is less than the turn

threshold. If not, there may still be room to move or rotate

toward the waypoint, so the process may exit and continue on

with the current waypoint. Otherwise, operation block 920

iterates to the next waypoint in the waypoint list, and the

process exits.

FIG. 27 is a software flow diagram illustrating components

of an algorithm for adjusting translational velocity 930 during

the waypoint follow behavior. First, operation block 932 tests

to see if the distance to the next waypoint is less than one tenth

of the robot’s length. If so, operation block 934 performs an

44
update of the robot’ s current pose to be certain that the pose is

precise relative to the waypoint location.

If operation block 932 evaluates false, or after the pose is

updated, decision block 936 tests to see if the range to the

5 closest object in front is less than twice a predefined thresh-

old. If not, control transfers to decision block 944. However,
if the range to the closest object in front is less than twice a

predefined threshold, the robot may be approaching close to

an obstacle, so decision block 938 tests to see if the robot is
10 blocked in the direction of the target. If so, operation block

940 performs a backup procedure and the process exits. If the

robot is not blocked in the target direction, decision block 942

tests to see if the angle to the target is greater than 60 degrees.

If so, the robot may not be able to achieve the target without

15 backing up, so operation block 940 performs a backup pro-

cedure and the process exits. If the angle to the target is not

greater than 60 degrees, a backup procedure may not be

needed and control transfers to decision block 944.

Decision block 944 tests to see if the angle to the target is

2o greater than 45 degrees. If so, operation block 946 sets the

translational speed to zero enabling the robot to stop making

forward progress while it rotates to face more directly toward

the target. After setting the speed to zero, the process exits.

If the angle to the target is not greater than 45 degrees, new

25 translational velocity determination continues by decision

block 948 testing to see ifa detection behavior is in progress.

As stated earlier when describing the obstacle avoidance

behavior, a detection behavior may be a behavior where the

robot is using a sensor in an attempt to find something. For

3o example, the countermine conduct is a detectionbehavior that

is searching for landmines. In these types of detection behav-

iors, it may be desirable to approach much closer to objects, or

to approach objects with a much slower speed to allow time

for the detection function to operate. Thus, if a detection

35 behavior is active, operation block 950 sets a desired speed

variable based on detection parameters that may be impor-

tant. By way of example and not limitation, in the case of the

countermine conduct this desired speed may be set as:

Desired_Spee�Max_pas sover_rate- (Scan-amplitude/

4o Scan_Speed). In this countermine conduct example, the

Max_ passover_rate may indicate a maximum desired speed

for passing over the landmine. This speed may be reduced by

other factors. For example, the (Scan_amplitude/

Scan_Speed) term reduces the desired speed based on a factor

45 of how fast the mine sensor sweeps an area. Thus, the Scan_

amplitude term defines a term of the extent of the scan sweep

and the Scan_Speed defines the rate at which the scan hap-

pens. For example, with a large Scan_amplitude and a small

Scan_Speed, the Desired_Speed will be reduced significantly

5o relative to the Max_passover_rate to generate a slow speed

for performing the scan. While countermine conduct is used

as an example of a detection behavior, those of ordinary skill

in the art will recognize that embodiments of the present

invention may include a wide variety of detection behaviors,

55 such as, for example, radiation detection, chemical detection,

and the like.

If a detection behavior is not in progress, decision block

952 tests to see ifa velocity limit is set. In some embodiments

of the invention, it may be possible for the operator to set a

6o velocity limit that the robot should not exceed, even if the

robot believes it may be able to safely go faster. For example,

if the operator is performing a detailed visual search, the robot

may be performing autonomous navigation, while the opera-

tor is controlling a camera. The operator may wish to keep the

65 robot going slow to have time to perform the visual search.

Ifa velocity limit is set, operation block 954 sets the desired

speed variable relative to the velocity limit. The equation

US 7,801,644 B2
45

illustrated in operation block 954 is a representative equation

that may be used. The 0.1 term is a term used to ensure that the

robot continues to make very slow progress, which may be
useful to many of the robot attributes, behaviors, and conduct.

In this equation, the Speed_Factor term is a number from one

to ten, which may be set by other software modules, for

example the guarded motion behavior 500 (FIG. 13), to indi-

cate a relative speed at which the robot should proceed. Thus,

the desired speed is set as a fractional amount of the Max_

Limit_Speed.

If a velocity limit is not set, operation block 956 sets the

desired speed variable relative to the maximum speed set for

the robot (i.e., Max_Speed) with an equation similar to that

for operation block 614 except Max_Speed is used rather than

Max_Limit_Speed.

After the Desired_Speed variable is set by operation block

950, 954, or 956, decision block 958 determines if the dis-
tance to the current waypoint is less than the current velocity

plus a small safety factor. If not, operation block 968 sets the

new translational speed for the robot to the Desired_Speed

variable and the process exits. However, if the current way-

point is getting close, as determined by decision block 958

evaluating true, decision block 960 determines if the current

waypoint is part of an arc. If so, operation block 962 sets the

translational speed such that the robot can smoothly traverse
the arc. Thus, operation block 962 is a representative equation

that sets the new translational speed as a function of the larger

of either the angle to the target, or the turn angle to the next

waypoint. In other words, the translation velocity will be

reduced by setting the new speed to the current speed multi-

plied by a fractional change factor. This fractional change

factor may be defined as the cosine of the larger of either the

angle to the target, or the turn angle to the next waypoint.

If the current waypoint is not part of an arc, it may still be

desirable to slow the robot’s translational speed down in

preparation for turning toward the next waypoint. Thus,

operation block 964 is a representative equation for setting

the new translational speed for the robot by multiplying the

current speed by a different fractional change factor. This

fractional change factor may be set as about (0.7+(0.3"COS

(Next_Turn_Angle)). In other words, the new speed will be

set somewhere between 70% and 100% of the current speed

based on the angle towards the next waypoint. If the angle is

small, for example zero degrees, there may be no need to slow

down and the new speed can be set at 100% of the current

speed. Conversely, if the angle is large, for example 90

degrees, it may be desirable to slow down significantly in

preparation for a turn to the new waypoint. Thus, the new

translational velocity is set at 70% of the current speed. Of

course, the next time through the global timing loop presents

another chance to adjust the translational speed if the angle to

the next waypoint is still large.

This sets the translational speed based on the severity of the
turn that will be negotiated to achieve the next waypoint.

After setting the current speed, from operation block 968,

964, or 962, the translational velocity 930 process ends.

FIG. 28 is a software flow diagram illustrating components

of an algorithm for performing rotational velocity adjust-
ments 970 of the waypoint follow behavior. First, decision

block 972, checks to see if waypoint following is enabled. If
not, the process exits, because rotational velocity changes

will be handled by another behavior, such as, for example, the

obstacle avoidance behavior.

Ifwaypoint following is enabled, decision block 974 tests

to see if the robot is blocked in front. If not, rotational velocity

determination can continue at decision block 986. However if

the robot is blocked in front, decision block 976 determines

46
whether the current waypoint is to the left of the robot. If so,

decision block 978 tests the area to the left of the robot where

the robot may want to turn toward and find the range to the

nearest object in that area. If the range is larger than a turning
5 threshold, as tested by decision block 982, there is room to

turn, so operation block 980 sets the rotational velocity to the

left at 30% of a predefined maximum rotational velocity.

After setting the rotational velocity, the process exits.

If the waypoint is not on the left, decision block 982 tests
10 the area to the right of the robot where the robot may want to

turn toward and find the range to the nearest object in that

area. If the range is larger than a turning threshold, as tested by

decision block 982, there is room to turn, so operation block

984 sets the rotational velocity to the right at 30% of a pre-
15 defined maximum rotational velocity. After setting the rota-

tional velocity, the process exits.

If the robot is blocked in front and there is not room to turn

(i.e., either decision block 978 or 982 evaluates false), then
the process exits to a get unstuck behavior in an effort to find

2o a way to get around the obstacle in front so that the robot can

continue to pursue the current waypoint.

If the robot is not blocked in front, decision block 986 tests
to see if the angle to the waypoint target is less than ten

degrees. If so, the robot is close to pointed in the correct
25 direction and only minor corrections may be useful. Thus, in

a representative method for determining an appropriate

change to the rotational velocity, operation block 988 sets a

Waypoint_Turn_Gain as the angle to the target divided by

100. Conversely, if the waypoint target is equal to or greater
3o than ten degrees, a larger correction to the rotational velocity

may be appropriate to get the robot pointed toward the current

waypoint. Thus, in a representative method for determining

an appropriate change to the rotational velocity, operation

block 990 sets a Waypoint Turn_Gain as the base 10 loga-
35 rithm of the angle to the target minus one. As a result, the

larger the angle to the waypoint target, the larger the value

will be for the Waypoint_Turn_Gain.

With the Waypoint_Tum_Gain set, decision block 992

tests to see if the waypoint is on the left. If so, operation block
40 994 sets the turn velocity to the left by multiplying the current

turn velocity by the Waypoint_Turn_Gain, and the process

exits. If the waypoint is not on the left, operation block 996

sets the turn velocity to the right by multiplying the current

turn velocity by the Waypoint_Turn_Gain, and the process
45 exits.

As with other behaviors, the waypoint algorithms 900,930,

and 970, in FIGS. 26, 27, and 28, respectively operate on the

global timing loop. Consequently, the decision of whether a

50
waypoint has been achieved to move on to the next waypoint,

adjustments to the translational velocity, and adjustments to

the rotational velocity, may be repeated on each time tick of

the global timing loop.

4.6. Robotic Follow Conduct

55 One representative cognitive conduct module enabled by
the RIK is a robotic follow capability wherein one or more

robots are sent to a map location of the most recent change in

the environment or directed to follow a specific moving

object. FIG. 29 is a software flow diagram illustrating corn-

60 ponents of an algorithm for performing the follow conduct

1000.

This relatively autonomous conduct may be useful for a

fast-moving robot with perceptors that may be used by robot

attributes and robot behaviors to detect and track changes in

65 the environment. It would be difficult for conventional robots
under direct operator control to avoid obstacles, track where

the robot is going, and track the object of pursuit at the same

US 7,801,644 B2
47

time. However, with the relatively autonomous conduct and

collaborative tasking enabled by the RIK, a high-speed chase

may be possible.

The RIK may include a tracking behavior that allows the

robot to track and follow an object specified by the operator

with the camera or other tracking sensors, such as thermal,

infrared, sonar, and laser. Consequently, the tracking behav-

ior is not limited to visual tracking, but can be used with any

tracking system including a thermal imaging system for

tracking human heat signatures.

In visual tracking, for example, the operator may specify an

object to be tracked within the operator’s video display by

selecting a pursuit button on the interface and then manipu-

lating the camera view so that the object to be tracked is

within a bounding box. The camera can then track the object

based on a combination of, for example, edge detection,

motion tracking, and color blob tracking. Furthermore, the

camera can track the motion of the target independently from

the motion of the robot, which allows the robot to follow the
optimal path around obstacles, even if this path at first may

take the robot in a direction different from a direction of the

target.

Thus, the robotic follow conduct 1000 effectively blends

robot behaviors, such as, for example, tracking, obstacle

avoidance, reactive path planning, and pursuit behaviors. To

begin the follow conduct 1000, operation block 1010 illus-

trates that conduct queries or receives information regarding

the present bearing to a target. This present bearing may be

generated by a tracking behavior, such as, for example, the

ROCA behavior discussed above or from an updated map

location from the operator or other robot. In addition, the

present bearing may be converted to a robot relative coordi-

nate system, if needed. Both the tracking behavior and follow

conduct 1000 operate on the global timing loop. As a result,

the follow conduct 1000 will be re-entered each timing tick

and be able to receive an updated bearing to the target, from

the tracking behavior or other defined location, each timing

tick.

Decision block 1015 tests to see if the robot has reached the

target. If so, the follow conduct 1000 exits. If not, the follow

conduct 1000 transitions to decision block 1020. In this rep-

resentative embodiment, reaching a target is defined as: 1) the

closest obstacle in a 30° region in which the tracked object

lies is closer than the closest obstacle in a 30° region on the

opposite side; 2) both L-front and R-front are obstructed; 3)

the angle to which the object lies in the front region; and 4) the

distance to the object in front is less than the distance on the

right and left.

Decision block 1020 tests to see if the front is blocked. If

so, control transfers to operation block 1030 to attempt to get

around the obstacle. If not, control transfers to decision block
1070. The front blocked decision may be based, for example,

on a flag from the guarded motion behavior discussed previ-

ously.

Decision block 1030 begins a process of attempting to get

around a perceived obstacle. To begin this process, decision

block 1030 checks the current speed. If the speed is not

greater than zero, control transfers to decision block 1040. If

the speed is greater than zero, operation block 1035 sets the

speed to zero before continuing with decision block 1040.

Decision block 1040 tests to see if the robot is blocked on

the left or right. If not, control transfers to decision block

1050. If the robot is blocked on the left or right, the robot may

not have an area sufficient to make a turn, so operation block

1045 sets the robot to begin backing up with an angular

48
velocity of zero and a linear velocity that is 20% of the

presently specified maximum, then the follow conduct 1000

exits.

Decision block 1050 tests to see if the robot is blocked in

5 the direction of the target. If so, control transfers to decision

block 1060. If the robot is not blocked in the direction of the

target, operation block 1055 sets the robot to turn toward the

target with a linear velocity of zero and an angular velocity

that is 60% of the presently specified maximum, then the

10 follow conduct 1000 exits.

Decision block 1060 tests to see if the target is positioned

substantially in front of the target. If so, the target is in front

of the robot, but the robot is also blocked by an obstacle. Thus,

operation block 1062 attempts to move forward slowly but

15 also turn around the obstacle by setting the linear velocity to

10% of the presently specified maximum and the angular

velocity to 60% of the presently specified maximum and

away from the obstacle. Then, the follow conduct 1000 exits.

If decision block 1060 evaluates false, then the direction
2o directly in front of the robot is blocked, and the direction

toward the target is blocked. Thus, operation block 1064

attempts to find a clear path to the target by setting the linear

velocity to -20% of the presently specified maximum (i.e.,

backing up) and the angular velocity to 30% of the presently

25 specified maximum and in the direction of the target. Then,

the follow conduct 1000 exits.

Returning to decision block 1020, if decision block 1020
evaluates false, then decision block 1070 begins a process of

attempting to progress toward the target since the front is not

3o blocked. Thus, decision block 1070 tests to see if the robot is
blocked in the direction of the target. If so, operation block

1075 attempts to move forward while gradually turning away

from the target in an effort to try to find a clear path to the

target by setting the linear velocity to 20% of the presently

35 specified maximum and the angular velocity to 20% of the

presently specified maximum. Then, the follow conduct 1000

exits.

If decision block 1070 evaluates false, then the target is not

in front of the robot and the robot is free to move forward.

4o Thus, operation block 1080 attempts to move forward and

turn toward the target. In this representative embodiment, the

robot is set with an angular velocity toward the target that is

determined by the current bearing toward the target divided

by a predetermined turn factor. Consequently, the speed at
45 which the robot attempts to turn directly toward the target

may be adjusted by the turn factor. In addition, the robot is set

to move forward at a safe speed, which may be set as 10% of

the maximum, to ensure the robot keeps moving, plus a safe

speed adjustment. The safe speed adjustment may be defined

5o as (Front-forward_threshold)/2. Wherein Front defines the
distance to the nearest object in the vicinity of directly in front

as defined by the range attribute discussed earlier, and for-

ward_threshold defines a distance to which the robot may be

relatively certain that objects are outside of its time horizon.

55 Thus, the robot makes fast, but safe, forward progress while

turning toward the target, and the speed may be adjusted on

the next time tick based on new event horizon information.

As with other robot behaviors and cognitive conduct, the

follow conduct 1000 operates on the global timing loop.

6o Consequently, the ROCA behavior 700 will be re-entered and

the process repeated on the next time tick.

4.7. Countermine Conduct
One representative cognitive conduct module enabled by

the RIK is a countermine process. FIGS. 30A and 30B are

65 software flow diagrams illustrating components of a counter-

mine conduct module. Landmines are a constant danger to

soldiers during conflict and to civilians long after conflicts

US 7,801,644 B2
49

cease, causing thousands of deaths and tens of thousands of

injuries every year. Human minesweeping to find and remove

mines is a dangerous and tedious job. Mine-detecting robots

may be better equipped and expendable if things go wrong.

The countermine conduct 1100 in FIGS. 30A and 30B illus-

trates a relatively autonomous conduct that may be useful for

finding and marking landmines based on a predetermined

path. The predetermined path may be defined as a series of
waypoints, or may be simply defined as a straight path

between the robot’s present position and an end point. For

example, the series ofwaypoints may be defined on a map to

follow a road or to create a broad coverage of a large area.

Those of ordinary skill in the art will recognize that FIGS.
30A and 30B illustrate a high level decision and an action

process. Details of many of the behaviors, such as some

movements of manipulators and details of what comprises the

sensing of a mine may not be described in detail. Further-

more, FIGS. 30A and 30B and the description herein may

express details of geometry and function related to a specific

robot implementation for explanation purposes. Embodi-
ments of the present invention are not intended to be limited

to these specific implementation details.

To begin the countermine conduct 1110, an initiate task

1110 is performed. Generally, this initiate task 1110 may be

performed at the beginning of a countermine sweep and
would thus be performed once, outside of the global timing

loop.
The initiate task 1110 may include operation block 1112 to

fully raise a sensing device, which may be configured for

sensing landmines and may be positioned on a manipulator

for placement near the ground and for generating a sweeping

motion of the mine sensor in a region around the robot.

Operation block 1114 calibrates the sensing device and, for

example, corrects for background noise, if needed. Operation

block 1116 then positions the sensing device for operation

and defines sensing parameters. As an example, the represen-

tative embodiment of FIG. 30A illustrates setting a sweep

amplitude, and a sweep speed for the mine sensor.

After the initiate task 1110, the countermine conduct 1100
begins a fast advance process in operation block 1120 by

setting a relatively fast speed toward the first waypoint in

operation block 1122. The fast advance speed may depend on

many factors, such as, for example, the motion capabilities of

the robot, the sweeping characteristics of the manipulator,

and the sensing characteristics of the mine sensor. Generally,

the robot’s fast advance speed may be set relative to the sweep

coverage of the manipulator to ensure sufficient coverage of

the area being swept. For example, in this specific embodi-

ment, operation block 1120 sets the robot’s speed to about

0.35 meter/second-(SweepWidth!10). Thus, operation block

1120 actually determines the maximum advance rate based
on scan width and scan speed to ensure 100% coverage. After

setting the maximum advance rate, operation block 1124,

enables the guarded motion and obstacle avoidance. One

result of the fast advance process, operation block 1120, is

that the maximum advance rate serves as an upper bound of

allowable velocities for the guarded motion and obstacle

avoidance behaviors, as explained above.

Once in the fast advance process of operation block 1120,

the countermine conduct 1100 begins a process of sensing for

mines 1130. Decision block 1132 tests to see if a signal

processing threshold has been exceeded. This signal process-

ing threshold may be set at a predetermined level indicating a

potential that a mine has been sensed in the vicinity of the

mine sensor. Obviously, this predetermined threshold may be

a function of factors such as, for example, expected mine

types, mine sensor characteristics, robot speed, and manipu-

50
lator speed. If the signal processing threshold is not exceeded,

control returns to operation block 1122 to continue the fast

advance process of operation block 1120.

If the signal processing threshold is exceeded, the process
5 tests to see if there is enough room at the present location to

conduct a detailed search for the mine. Thus, decision block

1134 tests to see if the front range parameter is larger than a

predetermined threshold. By way of example and not limita-

10
tion, the threshold may be set at about one meter. If decision

block 1134 evaluates false, indicating that there may not be

enough room for a detailed search, control transfers to opera-

tion block 1122 to continue the fast advance process of opera-

tion block 1120. In this case, the process depends on the

15 guarded motion and obstacle avoidance behaviors to navigate

a path around the potential mine.

If the front range parameter is larger than a predetermined

threshold, there may be room for a detailed search and the

process continues. Decision block 1136 tests to see if the back
2o of the robot is blocked. If so, operation block 1138 sets the

robot to back up a predetermined distance (for example 0.2

meters) at a speed of, for example, 20% of a predetermined

maximum. This movement enables the robot to perform a

more accurate sweep by including in the scan the subsurface
25

area that triggered the processing threshold. If the area behind

the robot is not clear, the process continues without backing

up.

Operation block 1140 performs a coverage algorithm in an

3o attempt to substantially pinpoint the centroid of the possible

mine location. In a representative embodiment, this coverage

algorithm may include advancing a predetermined distance,

for example 0.5 meters, at a relatively slow speed, and sweep-

ing the manipulator bearing the mine sensor with a wider
35 sweep angle and a relatively slow speed. Thus, the coverage

algorithm generates a detailed scan map of the subsurface

encompassing the area that would have triggered the process-

ing threshold. The results of this detailed scan map may be

used to define a centroid for a mine, if found.
4o After the detailed scan from the coverage algorithm of

operation block 1140, decision block 1152 in FIG. 30B

begins a process to marking the mine location 1150, which

may have been found by the coverage algorithm. Decision

block 1152 tests to see if the centroid of a mine has been
45 found. If not, control transfers to the end of the mine marking

process 1150. A centroid of a mine may not be found because

the original coarse test at decision block 1132 indicated the

possibility of a mine, but the coverage algorithm at decision

block 1152 could not find a mine. As a result, there is nothing
50 to mark.

Ifa centroid was found, decision block 1154 tests to see if
physical marking, such as, for example, painting the location

on the ground, is enabled. If not, operation block 1156 saves

55 the current location of the sensed mine, then continues to the
end of the mine marking process 1150.

If marking is engaged, operation block 1158 saves the

current location of the mine, for example, as a waypoint at the

current location. Next, operation block 1160 corrects the

6o robot’s position in preparation for marking the location. For

example and not limitation, the robot may need to backup

such that the distance between the centroid of the mine and
the robot’s current position is substantially near the arm

length of the manipulator bearing the marking device.

65 With the robot properly positioned, operation block 1162

moves the manipulator bearing the marking device in proper

position for making a mark. For example of a specific robot

US 7,801,644 B2
51

configuration, and not limitation, the manipulator may be

positioned based on the equation:

arm position robot pose-arctan((robotx-centroidx)/
roboty-centroidy))

5
With the manipulator in position, operation block 1164

marks the mine location, such as, for example, by making a

spray paint mark.

After completion of the mine marking process 1150, deci-

sion block 1166 tests to see if the robot has reached the 10

furthest waypoint in the predefined path. If so, the counter-

mine conduct 1100 has completed its task and exits. If the

further waypoint has not been reached, control returns to the

fast advance process 1120 in FIG. 30A.

5. Multi-Robot Control Interface
Conventional robots lack significant inherent intelligence

allowing them to operate at even the most elementary levels of
autonomy. Accordingly, conventional robot "intelligence"
results from a collection of programmed behaviors prevent-
ing the robot from performing damaging and hurtful actions,
such as refraining from getting stuck in comers or encounter-
ing obstacles.

While robots have great potential for engaging in situations
without putting humans at risk, conventional robots still lack
the ability to make autonomous decisions and therefore con-
tinue to rely on continuous guidance by human operators who
generally react to live video from the robot’s on-board cam-
eras. An operator’s user interface with a robot has generally
been limited to a real-time video link that requires a high-
bandwidth communication channel and extensive human
interaction and interpretation of the video information.

Most commercial robots operate on a master/slave prin-
ciple where a human operator controls the movement of the
robot from a remote location in response to information from
robot-based sensors such as video and GPS. Such an interface
often requires more than one operator per robot to navigate
around obstacles to achieve a goal and such an approach
generally requires highly practiced and skilled operators to
reliably direct the robot. Additionally, the requisite concen-
tration needed for controlling the robot may also detract an
operator from achieving the overall mission goals. Accord-
ingly, even an elementary search and rescue task using a robot
has typically required more than one operator to monitor and
control the robot. As robots become more commonplace,
requiring an abundance of human interaction becomes inef-
ficient and costly, as well as error prone. Therefore, there is a
need to provide a usable and extendable user interface
between a user or operator and a plurality of robots.

Embodiments of the present invention provide methods
and apparatuses for monitoring and tasking multiple robots.
In the following description, processes, circuits and functions
may be shown in block diagram form in order not to obscure
the present invention in unnecessary detail. Additionally,
block definitions and partitioning of logic between various
blocks is exemplary of a specific implementation. It will be
readily apparent to one of ordinary skill in the art that the
present invention may be practiced by numerous other parti-
tioning solutions. For the most part, details concerning timing
considerations, and the like, have been omitted where such
details are not necessary to obtain a complete understanding
of the present invention and are within the abilities of persons
of ordinary skill in the relevant art.

The various embodiments of the present invention are
drawn to an interface that supports multiple levels of robot
initiative and human intervention, which may also provide an
increased deployment ratio of robots to operators. Addition-

52
ally, exchange of information between a robot and an operator

may be at least partially advantageously processed prior to

presentation to the operator, thereby allowing the operator to

interact at a higher task level. Further improvements are also

provided through tasking of multiple robots and decompos-

ing high-level user tasking into specific operational behaviors

for one or more robots.

FIG. 31 is a block diagram of a multi-robot system includ-

ing a multi-robot user interface, in accordance with an

embodiment of the present invention. A multi-robot system

3100 includes a team 3102 of robots 3104 including a plural-

ity of robots 3104-1, 3104-N. Multi-robot system 3100 fur-

ther includes a user interface system 3106 configured to com-

municate with the team 3102 of robots 3104 over respective

15 communication interfaces 3108-1, 3108-N.
By way of example and not limitation, the user interface

system 3106, including input devices such as a mouse 3110 or
joystick, enables effective monitoring and tasking of the team
3102 of robots 3104. Interaction between robots 3104 and

2o user interface system 3106 is in accordance with a commu-
nication methodology that allows information from the
robots 3104 to be efficiently decomposed into essential
abstractions that are sent over communication interfaces
3108-1, 3108-N on a "need-to-know" basis. The user inter-
face system 3106 parses the received messages from robots

25 3104 and reconstitutes the information into a display that is

meaningful to the user.
In one embodiment of the present invention, user interface

system 3106 further includes a user interface 3200 as illus-
trated with respect to FIG. 32. User interface 3200 is config-

3o ured as a "cognitive collaborative workspace" that is config-
ured as a semantic map overlaid with iconographic
representations, which can be added and annotated by human
operators as well as by robots 3104. The cognitive collabo-
rative nature of user interface 3200 includes a three-dimen-

35 sional (3D) representation that supports a shared understand-
lng of the task and environment. User interface 3200 provides
an efficient means for monitoring and tasking the robots 3104
and provides a means for shared understanding between the
operator and the team 3102 of robots 3104. Furthermore, user
interface 3200 may reduce human navigational error, reduce

4o human workload, increase performance and decrease com-

munication bandwidth when compared to a baseline teleop-
eration using a conventional robot user interface.

In contrast to the static interfaces generally employed for

control of mobile robots, user interface system 3106 adapts
45 automatically to support different modes of operator involve-

ment. The environment representation displayed by the user

interface 3200 is able to scale to different perspectives. Like-

wise, the user support and tasking tools automatically con-

figure to meet the cognitive/information needs of the operator
5o as autonomy levels change.

A functional aspect of the user interface 3200 is the cog-
nitive, collaborative workspace, which is a real-time semantic
map, constructed collaboratively by humans and machines
that serves as the basis for a spectrum of mutual human-robot

55 interactions including tasking, situation awareness, human-
assisted perception and collaborative environmental "under-
standing." The workspace represents a fusion of a wide vari-
ety of sensing from disparate modalities and from multiple
robots.

Another functional aspect of the user interface 3200 is the
6o ability to decompose high-level user tasking into specific

robot behaviors. User interface system 3106 may include
capabilities for several autonomous behaviors including area
search, path planning, route following and patrol. For each of
these waypoint-based behaviors, the user interface system

65 3106 may include algorithms which decide how to break up

the specified path or region into a list ofwaypoints that can be
sent to each robot.

US 7,801,644 B2
53

The collaborative workspace provided by the user interface

3200 provides a scalable representation that fuses informa-

tion from many sensors, robots and operators into a single

coherent picture. Collaborative construction of an emerging
map enhances each individual team robot’s understanding of

the environment and provides a shared semantic lexicon for

communication.

User interface 3200 may support a variety of hardware

configurations for both information display and control

inputs. The user interface 3200 may be adapted to the needs of

a single operator/single robot team as well as to multi-opera-

tor/multiple robot teams with applications varying from

repetitive tasks in known environments to multi agent inves-

tigations of unknown environments.

With reference to FIG. 31, control inputs to the robot can

come from keyboards, mouse actions, touch screens, or joy-

sticks. Controls based on, for example, the joystick are

dynamically configurable. Any joystick device that the com-

puter system will recognize can be configured to work in the
user interface 3200.

By way of example and not limitation, an illustrative

embodiment of user interface 3200 is illustrated with respect

to FIG. 32. Display of information from the robot can be made

on one or more monitors attached to the user interface system

3106 (FIG. 31). The user interface 3200 contains several
windows for each robot on the team. These windows may

include: a video window 3210, a sensor status window 3220,
an autonomy control window 3230, a robot window 3240 and

a dashboard window 3250. Each of these windows is main-

tained, but not necessarily displayed, for each robot currently

communicating with the system. As new robots announce

themselves to the user interface system 3106, then a set of

windows for that specific robot is added. In addition, a multi-

robot common window also referred to herein as an emerging

map window 3260 is displayed, which contains the emerging

position map and is common to all robots on the team. The

illustrative embodiment of the user interface 3200 includes a

single display containing, for example, five windows 3210,

3220, 3230, 3240, 3250 and a common emerging map win-

dow 3260, as illustrated with respect to FIGS. 33-38.

FIG. 33 illustrates a video window 3210 of user interface

3200, in accordance with an embodiment of the present

invention. Video window 3210 illustrates a video feed 3212

from the robot 3104 as well as controls for pan, tilt, and zoom.

Frame size, frame rate, and compression settings can be

accessed from a subwindow therein and provide a means for

the user to dynamically configure the video to support chang-

ing operator needs.

FIG. 34 illustrates a sensor status window 3220 of user

interface 3200, in accordance with an embodiment of the
present invention. Sensor status window 3220 includes status

indicators and controls that allow the operator to monitor and

configure the robot’s sensor suite as needed that permit the

operator to know at all times which sensors are available,

which sensors are suspect, and which are off-line. In addition,

the controls allow the user to actually remove the data from

each sensor from the processing/behavior refresh and moni-

toring loop. For example, the operator, through monitoring
the user interface 3200, may decide to turn off the laser range

finder if dust in the environment is interfering with the range

readings.

FIG. 35 illustrates an autonomy control window 3230 of

user interface 3200, in accordance with an embodiment of the
present invention. Autonomy control window 3230 includes a

plurality of selectable controls for specifying a degree of

robot autonomy.

54
Additionally, in autonomy control window 3230, the user

can select between different levels of robot autonomy. Mul-

tiple levels of autonomy provide the user with an ability to

coordinate a variety of reactive and deliberative robot behav-
5 iors. Examples of varying levels ofantonomy include telem-

ode, safe mode, shared mode collaborative tasking mode, and

autonomous mode as described above with reference to

FIGS. 10A and 10B.

User interface 3200 permits the operator or user to switch
10

between all four modes of autonomy as the task constraints,

human needs and robot capabilities change. For instance, the

telemode can be useful to push open a door or shift a chair out

of the way, whereas the autonomous mode is especially useful

15 if human workload intensifies or in an area where communi-
cations to and from the robot are sporadic. As the robot

assumes a more active role by moving up to higher levels of

autonomy, the operator can essentially "ride shotgun" and

turn his or her attention to the crucial tasks at hand locating
2o victims, hazards, dangerous materials; following suspects;

measuring radiation and/or contaminant levels�ithout

worrying about moment-to-moment navigation decisions or

communications gaps.

FIG. 36 illustrates a robot window 3240 of user interface
25

3200, in accordance with an embodiment of the present

invention. Robot window 3240 pertains to movement within

the local environment and provides indications of direction

and speed of robot motion, obstructions, resistance to motion,

and feedback from contact sensors. Robot window 3240 indi-
30

cates illustrative blockage indicators 3242 indicative of

impeded motion in a given direction next to the iconographic

representation of the robot wheels indicating that movement

right and left is not possible because of an object too close to

35
the left side wheels. These blockage indicators 3242 allow the

operator to understand why the robot 3104 has overridden a

movement command. Since the visual indications can some-

times be overlooked, a force feedback joystick may also be

implemented to resist movement in the blocked direction. The

4o
joystick may vibrate if the user continues to command move-

ment in a direction already indicated as blocked.

FIG. 37 illustrates a dashboard window 3250 of the multi-

robot user interface 3200, in accordance with an embodiment
of the present invention. As illustrated, dashboard window

45 3250 contains information about the robot’s operational sta-

tus such as communication activity, power and feedback

regarding the robot’s pitch and roll. When driving the robot

directly, operators may give directional commands using the

joystick. Dashboard window 3250 further includes a number

50 of dials and indicators showing battery power level, speed,
heading, pitch!roll, system health, and communications

health.

FIG. 38 illustrates an emerging map window 3260 of the

multi-robot user interface 3200, in accordance with an
55 embodiment of the present invention. As illustrated, the

multi-robot common window or emerging map window 3260

provides an emerging map 3262 of the environment and

allows the operator to initiate a number of waypoint-based

autonomous behaviors such as search region and follow path.

6o In the emerging map window 3260, controls are also present

that enable an operator to zoom the map in and out. Unlike

competitive products that require transmission of live video

images from the robot to the operator for control, the user

interface system 3106 (FIG. 31) creates a 3D, computer-

65 game-style representation of the real world constructed on-

the-fly that promotes situation awareness and efficient task-

ing. Data for the dynamic representation is gathered using

US 7,801,644 B2
55

scanning lasers, sonar and infrared sensors that create a clear

picture of the environment, even when the location is dark or

obscured by smoke or dust.

The emerging map 3262 is displayed in user interface 3200

and illustrates not only walls and obstacles but also other

things that are significant to the operator. The operator can

insert items�eople, hazardous objects, etc., from a pull-

down menu or still images captured from the robot video�o

establish what was seen and where. In this way, the represen-

tation is a collaborative workspace that supports virtual and

real elements supplied by both the robot and the operator. The

emerging map 3262 also maintains the size relationships of

the actual environment, helping the operator to understand

the relative position of the robot in the real world. The opera-

tor may change the zoom, pitch and yaw of the emerging map

3262 to get other perspectives, including a top-down view of

the entire environment showing walls, obstacles, hallways

and other topographical features.
The multi-robot user interface system 3106 (FIG. 31) is

configured to recognize when communications are received

from a new robot and instantiates a new set of robot-centric

control windows to allow individual tasking of that robot.

Likewise, the user interface 3200 automatically displays and

disseminates whatever information is relevant to the collabo-

rative workspace (i.e., information to be shared such as vari-

ous map entities and environmental features it may have

discovered).
For the human team members, the current cognitive col-

laborative workspace, as illustrated with respect to user inter-

face 3200, provides point-and-click user validation and

iconographic insertion of map entities. An operator can verify

or remove entities, which have been autonomously added and

can add new entities. The user interface 3200 also allows the

workspace perspective to be focused on a single robot in

which case it will track a selected robot and transform the data

in various interface windows to be relevant to that robot. By

choosing to "free" the perspective, the user gains the ability to
traverse the environment with a third-person perspective and

monitor the task and environment as a whole. The multi-robot
user interface 3200 may decide which windows to show/hide

based on a level of autonomy and the choice of focus.

FIG. 39 is a diagram of control processes within the robots

and user interface system 3106, in accordance with an

embodiment of the present invention. FIG. 39 illustrates mul-

tiple robot processes 3300-1, 3300-N of robots 3104-1,

3104-N (FIG. 31) in the field being controlled by an operator

at user interface system 3106. The robot processes 3300-1,

3300-N pass data about their state and the environment

around them to an operator at user interface system 3106. The

operator sends commands and queries to the robot processes

3300-1, 3300-N to direct the operation of robots 3104-1,

3104-N.

Robot processes 3300-1, 3300-N illustrate a distillation of

the process of taking low-level data and converting it to per-

ceptual abstractions that are more easily grasped by an opera-

tor. These abstractions are packaged in data packets accord-

ing to a message protocol and then filtered for transmission to

user interface system 3106. This protocol is composed of

message packets that contain information on the type of data

being passed, the robot that generated the message, the data

itself, and control characters for the data packet. Each robot in

the field has a unique identifier that is contained in each data
packet it generates. All robots use the same communication

interface 3108-1, 3108-N to the user interface system 3106.

This abstraction and transmission method allows long dis-

tance radio communications at a low bandwidth over a single

channel for multiple robots, rather than requiring several

56
channels of a high bandwidth and close proximity as would be

required for passing raw data for analysis, as in most other

robot control systems.

Regarding the user interface system 3106, data packets
5 from the robots in the field enter the user interface system

3106 and are deblocked and extracted to information usable

by the user interface 3200 (FIG. 32). This data can go directly

to the various windows 3210, 3220, 3230, 3240, 3250, 3260,

or the data can go through an interface intelligence package
10 3330, which can provide further enhancement or abstractions

of the data that are meaningful to the operator. The various

embodiments of the present invention contemplate at least
two types of windows for each individual robot, display win-

dows and control windows. Display windows show data in
15 logical layouts and allow the operator to monitor the robot.

The presentation of data in windows 3210, 3220, 3230, 3240,

3250, 3260 may be partitioned into four types of windows,

individual robot display windows (e.g., sensor status window

3220, dashboard window 3250), individual robot control win-
2o dows (e.g., video window 3210, robot window 3240,

autonomy control window 3230), and map and tasking con-

trol windows (e.g., emerging map window 3260).

The map and tasking control windows show a more global

25
representation and contain all the robots together. They pro-

vide both display of data and the control of robot function.

The mapping and tasking control windows can also provide

higher level control to perform specific tasks, such as area

search, intruder detection, mine detection, and waypoint and

3o
path generation. In order to provide the higher level tasking,

the map and tasking control windows rely on the interface

intelligence package 3330.

Control messages from the user interface system 3106

follow a similar path to the robots as the data abstractions

35 follow from the robots to the user interface system 3106.
Command messages from the control windows (e.g., video

window 3210, robot window 3240, autonomy control win-

dow 3230) are assembled in data packets which may include

the same structure (e.g., message type, robot to whom the

4o packet is directed, the data itself, and the packet control
characters) as the packets from the robots. The packets to the

robots may be generated from the various control windows or

the interface intelligence package 3330. The messages are

packaged and sent through the robot interface server 3320 and

45 sent to the robots over the communication interface 3108-1,
3108-N and then deblocked in the robot communication layer

3302 and acted on by the appropriate robot.

The user interface system 3106 does not make assumptions

on the robots’ states but utilizes acknowledgement of sent

5o commands. For example, if the operator requests the robot to

go to a specific point (e.g., setting a waypoint), the user
interface system 3106 waits for the robot to send back the

waypoint before displaying the waypoint in the various win-

dows on user interface 3200. By enforcing an acknowledge-

55 ment, the actual robot state is always presented, rather than an

assumed state of the robot. However, the robot does not

require the detection or interaction with a user interface sys-

tem 3106 in order to preserve safety and complete a requested

task while also protecting itself from erroneous operator

6o maneuvers or directives. The robots may also constantly

broadcast their states over the communication interface

thereby allowing the user interface system 3106 to obtain

current robot status. Since each robot is constantly broadcast-

ing its data, and all data packets have unique robot identifiers,

65 the appearance of new robots in the message stream automati-

cally generates the appearance of the robot in the user inter-

face system 3106.

US 7,801,644 B2
57

Although this invention has been described with reference

to particular embodiments, the invention is not limited to

these described embodiments. Rather, the invention is limited
only by the appended claims, which include within their

scope all equivalent devices or methods that operate accord-

ing to the principles of the invention as described.

What is claimed is:

1. A method for providing a generic robot architecture for

robot control software, comprising:

providing a hardware abstraction level configured for

developing a plurality of hardware abstractions for

defining, monitoring, and controlling a plurality of hard-

ware modules available on a robot platform;

providing a robot abstraction level configured for defining

a plurality of robot attributes comprising at least one of
the plurality of hardware abstractions; and

providing a robot behavior level configured for defining a

plurality of robot behaviors comprising at least one of

the plurality of robot attributes;

wherein:

each robot attribute of the plurality is configured for

substantially isolating the robot behaviors from the

plurality of hardware abstractions;

each hardware abstraction of the plurality is configured

for substantially isolating the plurality of robot
attributes from a corresponding hardware module of

the plurality;

at least two hardware abstractions are configured to pro-

vide substantially similar hardware information to at

least one of the plurality of robot attributes; and

the at least one of the plurality of robot attributes is

configured to combine the hardware information from

each of the at least two hardware abstractions to form

attribute information for the at least one of the plural-

ity of robot attributes and can disregard the hardware

information from one of the at least two hardware

abstractions in forming the attribute information.

2. The method of claim 1, wherein the at least one of the
plurality of robot attributes disregards the hardware informa-

tion because the hardware module corresponding to the hard-

ware information is absent or non-functional.

3. The method of claim 1, wherein at least two hardware
abstractions provide substantially different hardware infor-

mation to at least one of the plurality of robot attributes, and

wherein the at least one of the plurality of robot attributes

combines the different hardware information from each of the

at least two hardware abstractions to form the attribute infor-

mation for the at least one of the plurality of robot attributes

when the attribute information involves a combination of the

different hardware information.

4. The method of claim 1, wherein the plurality of hardware

abstractions are selected from the group consisting of

manipulation abstractions of manipulation type devices,

communication abstractions of communication media and

communication protocols, locomotion abstractions of loco-

motion hardware, and perception abstractions of perception

type devices.

5. The method of claim 1, wherein the plurality of robot

attributes are selected from the group consisting of robot

health, camera view, resistance to motion, robot position,

robot motion, robot attitude, robot bounding shape, and

range.

6. The method of claim 1, wherein providing the robot

abstraction level further comprises providing a plurality of
environment abstractions wherein the plurality of environ-

ment abstractions provide environment information about an

58
environment around the robot to an operator, to the robot

behaviors, to another robot, or to combinations thereof.
7. The method of claim 6, wherein the plurality of environ-

ment abstractions are selected from the group consisting of an

5 occupancy grid, a robot map position, an obstruction abstrac-

tion, an environment feature abstraction, a target abstraction,

and an entity abstraction.

8. The method of claim 1, wherein the robot behaviors are
selected from the group consisting of reactive behaviors and

10 deliberative behaviors.

9. A computer readable medium having computer execut-

able instructions thereon, which when executed on a proces-

sor provide a generic robot architecture, comprising:

a hardware abstraction level configured for developing a

15 plurality of hardware abstractions for defining, monitor-

ing, and controlling a plurality of hardware modules

available on a robot platform;

a robot abstraction level configured for defining a plurality

of robot attributes comprising at least one of the plurality

20 of hardware abstractions; and
providing a robot behavior level configured for defining a

plurality of robot behaviors comprising at least one of

the plurality of robot attributes;

wherein:

25 each robot attribute of the plurality is configured for

substantially isolating the robot behaviors from the

plurality of hardware abstractions;

each hardware abstraction of the plurality is configured

for substantially isolating the plurality of robot

30 attributes from a corresponding hardware module of

the plurality;

at least two hardware abstractions provide substantially

similar hardware information to at least one of the

plurality of robot attributes; and

35 the at least one of the plurality of robot attributes com-

bines the hardware information from each of the at

least two hardware abstractions to form attribute

information for the at least one of the plurality of robot

attributes and can disregard the hardware information

4o from one of the at least two hardware abstractions in

forming the attribute information.

10. The computer readable medium of claim 9, wherein the

at least one of the plurality of robot attributes disregards the

hardware information because the hardware module corre-

45 sponding to the hardware information is absent or non-func-

tional.

11. The computer readable medium of claim 9, wherein at

least two hardware abstractions provide substantially differ-

ent hardware information to at least one of the plurality of

5o robot attributes, and wherein the at least one of the plurality of

robot attributes combines the different hardware information
from each of the at least two hardware abstractions to form the

attribute information for the at least one of the plurality of

robot attributes when the attribute information involves a

55 combination of the different hardware information.
12. The computer readable medium of claim 9, wherein the

plurality of hardware abstractions are selected from the group

consisting of manipulation abstractions of manipulation type

devices, communication abstractions of communication
6o media and communication protocols, locomotion abstrac-

tions of locomotion hardware, and perception abstractions of

perception type devices.

13. The computer readable medium of claim 9, wherein the

plurality of robot attributes are selected from the group con-

65 sisting of robot health, camera view, resistance to motion,

robot position, robot motion, robot attitude, robot bounding

shape, and range.

US 7,801,644 B2
59

14. The computer readable medium of claim 9, wherein the

robot abstraction level further comprises a plurality of envi-
ronment abstractions wherein the plurality of environment

abstractions provide environment information about an envi-

ronment around the robot to an operator, to the robot behav- 5

iors, to another robot, or to combinations thereof.
15. The computer readable medium of claim 14, wherein

the plurality of environment abstractions are selected from

the group consisting of an occupancy grid, a robot map posi-

tion, an obstruction abstraction, an environment feature 10
abstraction, a target abstraction, and an entity abstraction.

16. The computer readable medium of claim 9, wherein the

robot behaviors are selected from the group consisting of

reactive behaviors and deliberative behaviors.

17. A robot platform, comprising: 15

at least one perceptor configured for perceiving environ-

mental variables of interest;

at least one locomotor configured for providing mobility to

the robot platform;

a system controller configured for executing a generic 2o

robot architecture, the generic robot architecture com-

prising:

a hardware abstraction level configured for developing a

plurality of hardware abstractions for defining, moni-

toring, and controlling a plurality of hardware mod- 25

ules available on the robot platform;

a robot abstraction level configured for defining a plu-

rality of robot attributes comprising at least one of the

plurality of hardware abstractions; and

a robot behavior level configured for defining a plurality 3o

of robot behaviors comprising at least one of the plu-

rality of robot attributes;

wherein:

each robot attribute of the plurality is configured for

substantially isolating the robot behaviors from the 35

plurality of hardware abstractions;

each hardware abstraction of the plurality is config-

ured for substantially isolating the plurality of

robot attributes from a corresponding hardware

module of the plurality; 4o

at least two hardware abstractions are configured to

provide substantially similar hardware information

to at least one of the plurality of robot attributes;

and
45

the at least one of the plurality of robot attributes is

configured to combine the hardware information

60
from each of the at least two hardware abstractions

to form attribute information for the at least one of

the plurality of robot attributes and can disregard

the hardware information from one of the at least
two hardware abstractions in forming the attribute

information.

18. The robot platform of claim 17, wherein the at least one

of the plurality of robot attributes disregards the hardware

information because the hardware module corresponding to

the hardware information is absent or non-functional.

19. The robot platform of claim 17, wherein at least two

hardware abstractions provide substantially different hard-

ware information to at least one of the plurality of robot

attributes, and wherein the at least one of the plurality of robot

attributes combines different hardware information from
each of the at least two hardware abstractions to form the

attribute information for the at least one of the plurality of

robot attributes when the attribute information involves a

combination of the different hardware information.

20. The robot platform of claim 17, wherein the plurality of

hardware abstractions are selected from the group consisting

of manipulation abstractions of manipulation type devices,

communication abstractions of communication media and

communication protocols, locomotion abstractions of loco-

motion hardware, and perception abstractions of perception

type devices.

21. The robot platform of claim 17, wherein the plurality of

robot attributes are selected from the group consisting of

robot health, camera view, resistance to motion, robot posi-

tion, robot motion, robot attitude, robot bounding shape, and

range.

22. The robot platform of claim 17, wherein the robot

abstraction level further comprises a plurality of environment

abstractions, and wherein the plurality of environment

abstractions provide environment information about an envi-

ronment around the robot to an operator, to the robot behav-

iors, to another robot, or to combinations thereof.
23. The robot platform of claim 22, wherein the plurality of

environment abstractions are selected from the group consist-

ing of an occupancy grid, a robot map position, an obstruction

abstraction, and environment feature abstraction, a target

abstraction, and an entity abstraction.

24. The robot platform of claim 17, wherein the robot

behaviors are selected from the group consisting of reactive

behaviors and deliberative behaviors.

	Bibliographic data
	Abstract
	Description
	Claims
	Drawings

